Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1385-1392    DOI: 10.11900/0412.1961.2017.00255
  研究论文 本期目录 | 过刊浏览 |
生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究
张金睿1,2, 张晏玮3, 郝玉琳1(), 李述军1, 杨锐1
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 苏州热工研究院有限公司寿命管理技术中心 苏州 215004
Plastic Deformation Behavior of Biomedical Ti-24Nb-4Zr-8Sn Single Crystal Alloy
Jinrui ZHANG1,2, Yanwei ZHANG3, Yulin HAO1(), Shujun LI1, Rui YANG1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Life Management Technology Center, Suzhou Nuclear Power Research Institute, Suzhou 215004, China
引用本文:

张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
Jinrui ZHANG, Yanwei ZHANG, Yulin HAO, Shujun LI, Rui YANG. Plastic Deformation Behavior of Biomedical Ti-24Nb-4Zr-8Sn Single Crystal Alloy[J]. Acta Metall Sin, 2017, 53(10): 1385-1392.

全文: PDF(5955 KB)   HTML
摘要: 

针对具有特殊非线弹性变形行为的高强度低模量Ti-24Nb-4Zr-8Sn (质量分数,%,简称Ti2448)医用钛合金,采用光学浮区生长法制备出3种典型取向的低指数单晶,研究其塑性变形行为。结果表明,Ti2448单晶合金的室温拉伸性能表现出明显的各向异性,<100>取向、<110>取向和<111>取向单晶的抗拉强度分别为650、642和889 MPa,延伸率分别约为73%、22%和13%;单晶合金的室温拉伸塑性变形机制以滑移为主,<100>取向单晶开动的滑移系统为(112)[111]、(112)[111]、(112)[111]和(112)[111],<110>取向单晶开动的滑移系统为(211)[111]和(211)[111],<111>取向单晶开动的滑移系统为(211)[111];<100>取向、<110>取向和<111>取向单晶合金的拉伸样品断口形状分别呈现矩形状、鸭嘴状和三角状,断裂面与拉伸方向的夹角均约为55°,断口均呈现韧性断裂特征。

关键词 生物医用金属钛合金单晶塑性变形    
Abstract

Excellent corrosion resistance, good biocompatibility and relatively low elastic modulus make Ti and Ti alloys fulfill the property requirements in the biomedical field better than other competing materials such as stainless steels. Even so, there still exist some problems to be solved such as the biological toxicity of some alloy elements and the so-called stress shielding effect caused by higher elastic modulus than that of human bone. In response to these issues, several metastable β-type Ti alloys were developed with the advantage of nontoxicity and a much lower elastic modulus. Ti-24Nb-4Zr-8Sn (mass fraction, %, abbreviated Ti2448) alloy is a multifunctional biomedical Ti alloy with high strength and low elastic modulus, which makes it show great application prospect in the field of body implant. It put up obvious nonlinear elasticity and highly localized plastic deformation behavior. Study on deformation behavior of single crystal can help to understand the deformation mechanism of polycrystalline alloy. In this work, Ti2448 single crystal alloy along three different orientations were prepared by optical floating zone method. The plastic deformation behaviors of them under tensile stress were investigated in terms of mechanical properties, slip system and fracture morphology. Results show that Ti2448 single crystal shows obvious anisotropy, the tensile strengths along <100>, <110> and <111> orientations are 650, 642 and 889 MPa, respectively, while the elongations are about 73%, 22% and 13%, respectively. The main plastic deformation mechanism of Ti2448 single crystal alloy is by slip. The appearance of slip bands and its direction relationship with crystal orientation were detailed observed. Under tensile stress, the operated slip systems for <100>, <110> and <111> orientation single crystals are (112)[111]/(112)[111]/(112)[111]/(112)[111], (211)[111]/(211)[111] and (211)[111], respectively. This is in accordance with the law of critical shearing stress. SEM analyses show a fracture surface shape of rectangle, duckbilled and triangle for the <100>, <110> and <111> orientation single crystals, respectively. The intersection angle between fracture surface and loading direction is all about 55 degree, and a lot of dimple was detected that show ductile fracture mode.

Key wordsbiomedical metal    titanium alloy    single crystal    plastic deformation
收稿日期: 2017-06-29     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目Nos.51571190、51271180、51631007和51527801,国家高技术研究发展计划项目No.2015AA033702及国家重点研发计划专项项目Nos.2016YFC1102600和2017YFC1104903
作者简介:

作者简介 张金睿,男,满族,1993年生,博士生

Orientation LD TD ND
<100> [001] [100] [01?0]
<110> [011] [01?1] [100]
<111> [1?11] [011?] [211]
表1  Ti2448单晶合金板状拉伸样品与晶向指数的对应关系
Orientation E / GPa σb / MPa δ / % φ / %
<100> 27.1 650 73 62
<110> 56.3 642 22 75
<111> 88.1 889 13 65
表2  Ti2448合金不同取向单晶体单轴拉伸性能
Orientation Slip system Schmid factor
<100> (112)[111?] / (1?12)[11?1] / (11?2)[ 1?11] / (112?)[111] 0.471
<110> (211)[ 1?11] / (2?11)[111] 0.471
<111> (1?12)[11?1] / (1?21)[111?] / (2?11)[111] 0.314
表3  Ti2448合金不同取向单晶体拉伸时具有最大Schmid因子的滑移系统
图1  Ti2448合金<100>取向单晶拉伸时开动滑移系统的确定
图2  Ti2448合金<110>取向单晶拉伸时开动滑移系统的确定
图3  Ti2448合金<111>取向单晶拉伸时开动滑移系统的确定
图4  不同取向Ti2448单晶合金拉伸样品断裂后的SEM侧视像
图5  不同取向Ti2448单晶合金拉伸样品宏观断口形貌的SEM像
图6  不同取向Ti2448单晶合金拉伸样品微观断口形貌的SEM像
[1] Ren Y B, Yang K, Liang Y.Research and development of new biomedical metallic materials[J]. Mater. Rev., 2002, 16(2): 12(任伊宾, 杨柯, 梁勇. 新型生物医用金属材料的研究和进展[J]. 材料导报, 2002, 16(2): 12)
[2] Zheng Y F, Wu Y H.Revolutionizing metallic biomaterials[J]. Acta Metall. Sin., 2017, 53: 257(郑玉峰, 吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53: 257)
[3] Brunette D M, Tengvall P, Textor M, et al.Titanium in Medicine[M]. Berlin: Springer-Verlag, 2001: 45
[4] Lütjering G, Williams J C.Titanium[M]. 2nd Ed., New York: Springer, 2007: 138
[5] Long M, Rack H J.Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998, 19: 1621
[6] Saito T, Furuta T, Hwang J H, et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J]. Science, 2003, 300: 464
[7] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[8] Hao Y L, Yang R.High-strength multifunctional Ti-Nb-Zr-Sn alloy[J]. China Basic Sci., 2007, (5): 19(郝玉琳, 杨锐. 高强度多功能Ti-Nb-Zr-Sn合金[J]. 中国基础科学, 2007, (5): 19)
[9] Yang R, Hao Y L.Development and application of biomedical Ti2448 alloy with high strength and low modulus[J]. Adv. Mater. Ind., 2009, (6): 10(杨锐, 郝玉琳. 高强度低模量医用钛合金Ti2448的研制与应用[J]. 新材料产业, 2009, (6): 10)
[10] Hao Y L, Yang R.High strength nano-structured Ti-Nb-Zr-Sn alloy[J]. Acta Metall. Sin., 2005, 41: 1183(郝玉琳, 杨锐. 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报, 2005, 41: 1183)
[11] Laskovski A N.Biomedical engineering, trends in materials science[M]. Rejika: InTech, 2011: 225
[12] Bai Y, Li S J, Hao Y L, et al.Electrochemical corrosion behavior of a new biomedical Ti-24Nb-4Zr-8Sn alloy in Hanks solution[J]. Acta Metall. Sin., 2012, 48: 76(白芸, 李述军, 郝玉琳等. 新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究[J]. 金属学报, 2012, 48: 76)
[13] Bai Y, Li S J, Hao Y L, et al.Electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn in phosphate buffer saline solutions[J]. Chin. J. Nonferrous Met., 2010, 20(Spec. 1): 1030(白芸, 李述军, 郝玉琳等. 磷酸盐缓冲溶液中Ti-24Nb-4Zr-8Sn合金的电化学腐蚀行为[J]. 中国有色金属学报, 2010, 20(特刊1): 1030)
[14] Li J, Li S J, Zhao X L, et al.Effect of serum protein concentration on the electrochemical behavior of the nanostructured Ti2448 alloy in artificial siliva[J]. Rare Met. Mater. Eng., 2014, 43(Suppl. 1): 156(李季, 李述军, 赵晓丽等. 蛋白含量对Ti-24Nb-4Zr-8Sn纳米晶合金在模拟唾液中电化学行为的影响[J]. 稀有金属材料与工程, 2014, 43(增刊1): 156)
[15] Guo Z, Fu J, Zhang Y Q, et al.Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails on fractured bone[J]. Mater. Sci. Eng, 2009, C29: 963
[16] Hao Y L, Li S J, Sun S Y, et al.Super-elastic titanium alloy with unstable plastic deformation[J]. Appl. Phys. Lett., 2005, 87: 090916
[17] Hao Y L, Li S J, Sun B B, et al.Ductile titanium alloy with low poisson's ratio[J]. Phys. Rev. Lett., 2007, 98: 216405
[18] Hao Y L, Li S J, Sun S Y, et al.Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications[J]. Acta Biomater., 2007, 3: 277
[19] Li S J, Cui T C, Li Y L, et al.Ultrafine-grained β-type titanium alloy with nonlinear elasticity and high ductility[J]. Appl. Phys. Lett., 2008, 92: 043128
[20] Cui J P, Hao Y L, Li S J, et al.Reversible movement of homogenously nucleated dislocations in a β-titanium alloy[J]. Phys. Rev. Lett., 2009, 102: 045503
[21] Hao Y L, Wang H L, Li T, et al.Superelasticity and tunable thermal expansion across a wide temperature range[J]. J. Mater. Sci. Technol., 2016, 32: 705
[22] Wang H L, Hao Y L, He S Y, et al.Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition[J]. Scr. Mater., 2017, 133: 70
[23] Wang H L, Shah S A A, Hao Y L, et al. Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation[J]. J. Alloys Compd., 2017, 700: 155
[24] Wang H L, Hao Y L, He S Y, et al.Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy[J]. Acta Mater., 2017, 135: 330
[25] Zhang Y W, Li S J, Obbard E G, et al.Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure[J]. Acta Mater., 2011, 59: 3081
[26] Zhang Y W.Elastic and plastic deformation of Ti2448 single crystals [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2010(张晏玮. Ti2448合金单晶的弹塑性变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2010)
[27] Yu Y N.Fundamentals of Material Science [M]. Beijing: Higher Education Press, 2006: 536(余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006: 536)
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[8] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[9] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[10] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[13] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[14] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[15] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.