|
|
冷却速率对含Cu钛合金显微组织和性能的影响 |
彭聪1,2, 张书源1, 任玲1( ), 杨柯1 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy |
Cong PENG1,2, Shuyuan ZHANG1, Ling REN1( ), Ke YANG1 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
Cong PENG,
Shuyuan ZHANG,
Ling REN,
Ke YANG.
Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. Acta Metall Sin, 2017, 53(10): 1377-1384.
[1] | Navarro M, Michiardi A, Casta?o O, et al.Biomaterials in orthopaedics[J]. J. R. Soc. Interface, 2008, 5: 1137 | [2] | Arciola C R, Alvi F I, An Y H, et al.Implant infection and infection resistant materials: A mini review[J]. Int. J. Artif. Organs, 2005, 28: 1119 | [3] | Deysine M.Infections associated with surgical implants[J]. New Engl. J. Med., 2004, 351: 193 | [4] | Hu H, Zhang W, Qiao Y, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater., 2012, 8: 904 | [5] | Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706 | [6] | Ren L, Xu L, Feng J W, et al.In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis[J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235 | [7] | Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392 | [8] | Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461 | [9] | Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699 | [10] | Filip R, Kubiak K, Ziaja W, et al.The effect of microstructure on the mechanical properties of two-phase titanium alloys[J]. J. Mater. Process. Technol., 2003, 133: 84 | [11] | Gil F J, Ginebra M P, Manero J M, et al.Formation of α-Widmanst?tten structure: Effects of grain size and cooling rate on the Widmanst?tten morphologies and on the mechanical properties in Ti6Al4V alloy[J]. J. Alloys Compd., 2001, 329: 142 | [12] | Osório W R, Cremasco A, Andrade P N, et al.Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J]. Electrochim. Acta, 2010, 55: 759 | [13] | Koike M, Cai Z, Oda Y, et al.Corrosion behavior of cast Ti-6Al-4V alloyed with Cu[J]. J. Biomed. Mater. Res., 2005, 73B: 368 | [14] | Kikuchi M, Takada Y, Kiyosue S, et al.Mechanical properties and microstructures of cast Ti-Cu alloys[J]. Dent. Mater., 2003, 19: 174 | [15] | Aoki T, Okafor I C I, Watanabe I, et al. Mechanical properties of cast Ti-6Al-4V-XCu alloys[J]. J. Oral Rehabil., 2004, 31: 1109 | [16] | Ma Z, Ren L, Liu R, et al.Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723 | [17] | Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 74(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 74) | [18] | Matsumoto H, Yoneda H, Sato K, et al.Room-temperature ductility of Ti-6Al-4V alloy with α′ martensite microstructure[J]. Mater. Sci. Eng., 2011, A528: 1512 | [19] | Colins P C, Koduri S, Welk B, et al.Neural networks relating alloy composition, microstructure, and tensile properties of α/β-processed TIMETAL 6-4[J]. Metall. Mater. Trans., 2012, 44A: 1441 | [20] | Jovanovi? M T, Tadi? S, Zec S, et al.The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy[J]. Mater. Des., 2006, 27: 192 | [21] | Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al.Microstructure design and mechanical properties in a near-α Ti-4Mo alloy[J]. Acta Mater., 2015, 97: 291 | [22] | Sun Y, Zeng W D, Han Y F, et al.Modeling the correlation between microstructure and the properties of the Ti-6Al-4V alloy based on an artificial neural network[J]. Mater. Sci. Eng., 2011, A528: 8757 | [22] | Li C F, Li G P, Yang Y, et al.Influence of quenching temperature on martensite type in Ti-4Al-4.5Mo alloy[J]. Acta Metall. Sin., 2010, 46: 1061(李长富, 李阁平, 杨义等. 淬火温度对Ti-4Al-4.5Mo合金马氏体类型的影响[J]. 金属学报, 2010, 46: 1061) | [24] | Jiang X J, Jing R, Ma M Z, et al.The orthorhombic α″ martensite transformation during water quenching and its influence on mechanical properties of Ti-41Zr-7.3Al alloy[J]. Intermetallics, 2014, 52: 32 | [25] | Yu Z T, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM [J]. Mater. Sci. Eng., 2006, A438-440: 391 | [26] | Moiseev V N, Polyak é V, Sokolova A Y.Martensite strengthening of titanium alloys[J]. Met. Sci. Heat Treat., 1975, 17: 687 | [27] | Bai Y, Gai X, Li S J, et al.Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline[J]. Corros. Sci., 2017, 123: 289 | [28] | Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985 | [29] | Zhang E L, Wang X Y, Chen M, et al.Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application[J]. Mater. Sci. Eng., 2016, C69: 1210 | [30] | Ma Z, Ren L, Liu R, et al.Effect of heat treatment on cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|