Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1377-1384    DOI: 10.11900/0412.1961.2017.00267
  研究论文 本期目录 | 过刊浏览 |
冷却速率对含Cu钛合金显微组织和性能的影响
彭聪1,2, 张书源1, 任玲1(), 杨柯1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy
Cong PENG1,2, Shuyuan ZHANG1, Ling REN1(), Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(5025 KB)   HTML
摘要: 

研究了热处理后的冷却速率对Ti6Al4V-5Cu合金显微组织、力学性能、耐蚀性能及抗菌性能的影响。将合金分别进行不同冷却方式的热处理,即在740 ℃三相区分别进行水淬、空冷和炉冷,在820 ℃两相区和910 ℃单相区分别进行水淬。结果表明,炉冷合金由于初生α相的尺寸和体积分数最大,所以塑性最好;合金在740和820 ℃分别水淬后,由于组织中存在正交α′′相,其硬度和屈服强度显著降低;合金在910 ℃水淬后由于存在针状的hcp α′相,其硬度和抗拉强度最高,但塑性最差。随着热处理温度的升高,合金中的元素分布逐渐均匀,其耐蚀性能随之提高。改变冷却速率并不明显影响合金的抗菌性能,不同冷却速率下的合金都具有优异的抗菌性能。

关键词 含Cu钛合金显微组织力学性能耐蚀性能抗菌性能    
Abstract

The Cu-containing titanium alloy has been proved to possess excellent antibacterial performance, which has great potential for clinical application. In this work, the effect of cooling rate on the microstructure, mechanical properties, corrosion resistance and antibacterial property of a Ti6Al4V-5Cu alloy was investigated. Results showed that the furnace-cooled alloy exhibited the best ductility because of the maximum size and volume fraction of the primary α phase in microstructure. The alloys water quenched from 740 and 820 ℃ respectively demonstrated low hardness and yield strength due to the existence of orthorhombic α′′ phase in microstructure. The alloy quenched at 910 ℃ showed the highest hardness and tensile strength, but the lowest plasticity because of the presence of acicular hcp α′ phase. With the increase of heating temperature, the elemental distribution in the alloy became more uniform, and therefore the corrosion resistance increased gradually. However, the cooling rate did not obviously change the antibacterial property of the alloy. The Ti6Al4V-5Cu alloy showed excellent antibacterial property under different cooling rates.

Key wordsCu-containing titanium alloy    microstructure    mechanical property    corrosion resistance    antibacterial property
收稿日期: 2017-07-03     
ZTFLH:  R318.08  
基金资助:国家自然科学基金重点项目No.51631009,国家重点研发计划项目No.2016YFC1100600,中国科学院青年创新促进会会员项目No.2014168,广东省自然科学基金研究团队项目2015A030312004及辽宁省自然科学基金—沈阳材料科学(国家)联合实验室联合开放基金项目No.2015021004
作者简介:

作者简介 彭 聪,女,1990年生,博士生

引用本文:

彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy. Acta Metall Sin, 2017, 53(10): 1377-1384.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00267      或      https://www.ams.org.cn/CN/Y2017/V53/I10/1377

图1  Ti6Al4V-5Cu合金以不同速率冷却后的XRD谱
图2  Ti6Al4V-5Cu合金以不同速率冷却后的SEM像
图3  Ti6Al4V-5Cu合金TEM像及EDS分析
图4  冷却速率对Ti6Al4V-5Cu合金力学性能及耐蚀性能的影响
图5  不同冷却速率下Ti6Al4V-5Cu合金的抗菌实验结果
图6  不同冷却速率下Ti6Al4V-5Cu合金的活/死细菌染色实验结果
[1] Navarro M, Michiardi A, Casta?o O, et al.Biomaterials in orthopaedics[J]. J. R. Soc. Interface, 2008, 5: 1137
[2] Arciola C R, Alvi F I, An Y H, et al.Implant infection and infection resistant materials: A mini review[J]. Int. J. Artif. Organs, 2005, 28: 1119
[3] Deysine M.Infections associated with surgical implants[J]. New Engl. J. Med., 2004, 351: 193
[4] Hu H, Zhang W, Qiao Y, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater., 2012, 8: 904
[5] Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706
[6] Ren L, Xu L, Feng J W, et al.In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis[J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235
[7] Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392
[8] Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461
[9] Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699
[10] Filip R, Kubiak K, Ziaja W, et al.The effect of microstructure on the mechanical properties of two-phase titanium alloys[J]. J. Mater. Process. Technol., 2003, 133: 84
[11] Gil F J, Ginebra M P, Manero J M, et al.Formation of α-Widmanst?tten structure: Effects of grain size and cooling rate on the Widmanst?tten morphologies and on the mechanical properties in Ti6Al4V alloy[J]. J. Alloys Compd., 2001, 329: 142
[12] Osório W R, Cremasco A, Andrade P N, et al.Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J]. Electrochim. Acta, 2010, 55: 759
[13] Koike M, Cai Z, Oda Y, et al.Corrosion behavior of cast Ti-6Al-4V alloyed with Cu[J]. J. Biomed. Mater. Res., 2005, 73B: 368
[14] Kikuchi M, Takada Y, Kiyosue S, et al.Mechanical properties and microstructures of cast Ti-Cu alloys[J]. Dent. Mater., 2003, 19: 174
[15] Aoki T, Okafor I C I, Watanabe I, et al. Mechanical properties of cast Ti-6Al-4V-XCu alloys[J]. J. Oral Rehabil., 2004, 31: 1109
[16] Ma Z, Ren L, Liu R, et al.Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723
[17] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 74(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 74)
[18] Matsumoto H, Yoneda H, Sato K, et al.Room-temperature ductility of Ti-6Al-4V alloy with α′ martensite microstructure[J]. Mater. Sci. Eng., 2011, A528: 1512
[19] Colins P C, Koduri S, Welk B, et al.Neural networks relating alloy composition, microstructure, and tensile properties of α/β-processed TIMETAL 6-4[J]. Metall. Mater. Trans., 2012, 44A: 1441
[20] Jovanovi? M T, Tadi? S, Zec S, et al.The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy[J]. Mater. Des., 2006, 27: 192
[21] Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al.Microstructure design and mechanical properties in a near-α Ti-4Mo alloy[J]. Acta Mater., 2015, 97: 291
[22] Sun Y, Zeng W D, Han Y F, et al.Modeling the correlation between microstructure and the properties of the Ti-6Al-4V alloy based on an artificial neural network[J]. Mater. Sci. Eng., 2011, A528: 8757
[22] Li C F, Li G P, Yang Y, et al.Influence of quenching temperature on martensite type in Ti-4Al-4.5Mo alloy[J]. Acta Metall. Sin., 2010, 46: 1061(李长富, 李阁平, 杨义等. 淬火温度对Ti-4Al-4.5Mo合金马氏体类型的影响[J]. 金属学报, 2010, 46: 1061)
[24] Jiang X J, Jing R, Ma M Z, et al.The orthorhombic α″ martensite transformation during water quenching and its influence on mechanical properties of Ti-41Zr-7.3Al alloy[J]. Intermetallics, 2014, 52: 32
[25] Yu Z T, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM [J]. Mater. Sci. Eng., 2006, A438-440: 391
[26] Moiseev V N, Polyak é V, Sokolova A Y.Martensite strengthening of titanium alloys[J]. Met. Sci. Heat Treat., 1975, 17: 687
[27] Bai Y, Gai X, Li S J, et al.Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline[J]. Corros. Sci., 2017, 123: 289
[28] Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985
[29] Zhang E L, Wang X Y, Chen M, et al.Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application[J]. Mater. Sci. Eng., 2016, C69: 1210
[30] Ma Z, Ren L, Liu R, et al.Effect of heat treatment on cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.