Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 39-46    DOI: 10.11900/0412.1961.2017.00209
  本期目录 | 过刊浏览 |
9Cr18合金半固态触变压缩变形行为及组织演变
王永金1,2, 宋仁伯1(), 宋仁峰3
1 北京科技大学材料科学与工程学院 北京 100083
2 Institute of Industrial Science, The University of Tokyo, Tokyo 1538505, Japan
3 鞍钢集团矿业设计研究院有限公司 鞍山 114004
Deformation Behavior and Microstructure Evolution of 9Cr18 Alloy During Semi-Solid Compression
Yongjin WANG1,2, Renbo SONG1(), Renfeng SONG3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Industrial Science, The University of Tokyo, Tokyo 1538505, Japan
3 Ansteel Mining Engineering Corporation, Anshan 114004, China
全文: PDF(1234 KB)   HTML
摘要: 

以9Cr18合金为研究对象,分别对9Cr18热轧态材料及半固态坯料进行触变压缩实验。通过OM和SEM研究了其在加热、半固态及变形冷却后的显微组织演变规律,分析了其压缩过程中的固液流动特性和应力-应变关系。研究表明,半固态坯料制备是保证材料发挥半固态变形特性的必备流程,坯料加热至半固态温度能够保证固液三维均匀分布,充分发挥液相流动特性。仅通过对轧态材料加热至半固态温度区间会导致液相沿原带状组织区域熔化析出,固液分布不均匀。热轧态材料带状熔化致使液相不能形成三维连通,液相流动只能在不同部位的若干区域进行,变形主要通过固相颗粒塑性变形完成,进入最后阶段变形抗力上升。半固态坯料变形过程中固液相分布均匀,当变形进行至触变阶段,液相由于受到向外侧压力梯度作用,在固相间隙中流动,固相颗粒予以协调,发生宏观固液分离,从而使变形抗力随之下降。9Cr18合金在半固态温度区间成形过程中表现出不同于传统热处理的组织演变规律。半固态温度范围内奥氏体溶解合金元素的能力较传统奥氏体化(1050 ℃)有极大提高,从而提高了奥氏体在快速冷却过程中的稳定性,在冷却后得到过饱和的亚稳奥氏体组织。这种半固态独特的组织演变过程为材料组织性能控制提供一种新的可能。

关键词 9Cr18合金半固态力学性能组织演变    
Abstract

The compression behavior during semi-solid state is a fundamental basis for the following rheoforming or thixoforming. Coexist of solid/liquid phase leads to the unique deformation behavior. The chemical composition at each phase is different from conventional forming process. Deformation behavior and microstructure evolution are determined by various effects such as initial state, heating, cooling, etc. In this work, the semi-solid compression tests of 9Cr18 as hot-rolled material and semi-solid billet were conducted, respectively. Microstructure evolution during heating, semi-solid state, deformation and cooling was investigated by OM and SEM. Solid/liquid flow behavior and the relationship of stress-strain were analyzed. The results showed the preparation of semi-solid billet is essential for the uniformity of solid particle and liquid phase, which would help to demonstrate the flow behavior. Only heating the as hot-rolled material to semi-solid led to the banded precipitation of liquid phase. The banded melting of as hot-rolled material made it hard for liquid phase to connect with each other. Liquid flow only happened in partial area and plastic deformation of solid particles was the main deformation behavior. The stress increased at the final stage. As for semi-solid billet, solid particles and liquid film coexisted uniformly. Macro separation of solid/liquid occurred as deformation came into thixotropic stage. Liquid flew towards outside and solid particles rotated, thus leading to the decrease of stress. Microstructure evolution at semi-solid state was different from conventional heat treatment. Solid austenite particles at semi-solid state could dissolve more alloying elements than normal austenization (1050 ℃). This phenomenon would help to improve the stability of austenite and over-saturated meta-austenite was obtained after cooling. The special microstructure evolution during semi-solid state might provide a possible way to design a new heat treatment procedure.

Key words9Cr18 alloy    semi-solid state    mechanical property    microstructure evolution
收稿日期: 2017-06-01     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金项目No.51175036
作者简介:

作者简介 王永金,男,1990年生,博士生

引用本文:

王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
Yongjin WANG, Renbo SONG, Renfeng SONG. Deformation Behavior and Microstructure Evolution of 9Cr18 Alloy During Semi-Solid Compression. Acta Metall Sin, 2018, 54(1): 39-46.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00209      或      https://www.ams.org.cn/CN/Y2018/V54/I1/39

图1  半固态压缩示意图
图2  热轧态与半固态坯料原始显微组织
图3  Fe-C-Cr合金Thermo-Calc计算结果
图4  半固态加热后快速冷却组织
图5  9Cr18热轧态材料真应力-真应变曲线
图6  9Cr18半固态坯料真应力-真应变曲线
图7  9Cr18热轧态材料在不同半固态压缩比率的显微组织
图8  9Cr18半固体坯料在不同半固态压缩比率的显微组织
图9  9Cr18传统热处理和半固态变形后的反极图
图10  9Cr18传统热处理马氏体板条与半固态固相颗粒EDS选区分析结果
图11  不同初始状态9Cr18材料的显微组织演变示意图
[1] Flemings M C.Behavior of metal alloys in the semisolid state[J]. Metall. Trans., 1991, 22: 957
[2] Midson S P.Industrial applications for aluminum semi-solid castings[J].Solid State Phenom., 2014, 217-218: 487
[3] Liu Z, Zhang J Y, Luo H L, et al.Research on morphology evolution of primary phase in semisolid A356 alloy under chaotic advection[J]. Acta Metall. Sin., 2016, 52: 177(刘政, 张嘉艺, 罗浩林等. 混沌对流下的半固态A356铝合金初生相形貌演变研究[J]. 金属学报, 2016, 52: 177)
[4] Rassili A.A Review on thixoforming of high melting point alloys[J]. Solid State Phenom., 2016, 256: 228
[5] Lu Y L, Ji Z S, Hong Y, et al.Overview and research prospect of semisolid steel & iron[J]. Heat Treat. Met., 2006, 31(8): 27(逯允龙, 吉泽升, 洪艳等. 钢铁材料半固态研究现状及展望[J]. 金属热处理, 2006, 31(8): 27)
[6] Hu K, Phillion A B, Maijer D M, et al.Constitutive behavior of as-cast magnesium alloy Mg-Al3-Zn1 in the semi-solid state[J]. Scr. Mater., 2009, 60: 427
[7] Pan H P, Ding Z Y, Dong Y S, et al.Study of the constitutive model for thixo-forming of semi-solid AlSi7Mg alloy[J]. Acta Metall. Sin., 2003, 39: 369(潘洪平, 丁志勇, 董原生等. 半固态AlSi7Mg合金的触变力学模型研究[J]. 金属学报, 2003, 39: 369)
[8] Rogal ?.Semi-solid processing of the CoCrCuFeNi high entropy alloy[J]. Mater. Des., 2017, 119: 406
[9] Rogal ?, Korpala G, Dutkiewicz J.Evolution of microstructure in 100Cr6 steel after cooling from a thixoforming temperature to bainitic transformation ranges[J]. Mater. Sci. Eng., 2015, A624: 291
[10] Rogal ?, Dutkiewicz J.Deformation behavior of high strength X210CrW12 steel after semi-solid processing[J]. Mater. Sci. Eng., 2014, A603: 93
[11] Rogal ?, Dutkiewicz J, Szklarz Z, et al.Mechanical properties and corrosion resistance of steel X210CrW12 after semi-solid processing and heat treatment[J]. Mater. Charact., 2014, 88: 100
[12] Rogal ?, Dutkiewicz J.Heat treatment of thixo-formed hypereutectic X210CrW12 tool steel[J]. Metall. Mater. Trans., 2012, 43A: 5009
[13] Püttgen W, Hallstedt B, Bleck W, et al.On the microstructure and properties of 100Cr6 steel processed in the semi-solid state[J]. Acta Mater., 2007, 55: 6553
[14] Meng Y, Sugiyama S, Yanagimoto J.Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel[J]. J. Mater. Process. Technol., 2012, 212: 1731
[15] Xiao H, Chen Z B, Li Y, et al.Microstructure evolution of semi-solid copper alloy billet during uniaxial compression[J]. Chin. J. Nonferrous Met., 2016, 26: 2537(肖寒, 陈泽邦, 李勇等. 单向压缩半固态铜合金的显微组织演变[J]. 中国有色金属学报, 2016, 26: 2537)
[16] Wang Y J, Song R B, Li Y P.Flow mechanism of 9Cr18 steel during thixoforging and its properties for functionally graded material[J]. Mater. Des., 2015, 86: 41
[17] Jirková H, David A, Bohuslav M.Unconventional structure of X210Cr12 steel obtained by thixoforming[J]. J. Alloys Compd., 2010, 504: S500
[18] Gu G C, Pesci R, Langlois L, et al.Microstructure observation and quantification of the liquid fraction of M2 steel grade in the semi-solid state, combining confocal laser scanning microscopy and X-ray microtomography[J]. Acta Mater., 2014, 66: 118
[19] Moradi M, Nili-Ahmadabadi M, Poorganji B, et al.Recrystallization behavior of ECAPed A356 alloy at semi-solid reheating temperature[J]. Mater. Sci. Eng., 2010, A527: 4113
[20] Kang C G, Choi J S, Kim K H.The effect of strain rate on macroscopic behavior in the compression forming of semi-solid aluminum alloy[J]. J. Mater. Process. Technol., 1999, 88: 159
[21] Gu G C, Pesci R, Langlois L, et al.Microstructure investigation and flow behavior during thixoextrusion of M2 steel grade[J]. J. Mater. Process. Technol., 2015, 216: 178
[22] Zhang Y, Wu G H, Liu W C, et al.Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process[J]. Mater. Des., 2015, 67: 1
[23] Püttgen W, Hallstedt B, Bleck W, et al.On the microstructure formation in chromium steels rapidly cooled from the semi-solid state[J]. Acta Mater., 2007, 55: 1033
[24] Samantaray D, Borah U, Bhaduri A K, et al.Effect of semi-solid heat treatment on elevated temperature plasticity of 304L stainless steel[J]. J. Mater. Sci., 2016, 51: 4306
[25] Meng Y, Sugiyama S, Yanagimoto J.Effects of heat treatment on microstructure and mechanical properties of Cr-V-Mo steel processed by recrystallization and partial melting method[J]. J. Mater. Process. Technol., 2014, 214: 87
[26] Aisman D, Jirkova H, Kucerova L, et al.Metastable structure of austenite base obtained by rapid solidification in a semi-solid state[J]. J. Alloys Compd., 2011, 509: S312
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[14] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.