|
|
晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响 |
王瑾, 余黎明, 黄远, 李会军, 刘永长( ) |
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354 |
|
Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe |
Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU( ) |
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
Jin WANG,
Liming YU,
Yuan HUANG,
Huijun LI,
Yongchang LIU.
Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. Acta Metall Sin, 2018, 54(1): 47-54.
[1] | Samaras M.Multiscale modelling: The role of helium in iron[J]. Mater. Today, 2009, 12: 46 | [2] | Ishiyama Y, Kodama M, Yokota N, et al.Post-irradiation annealing effects on microstructure and helium bubbles in neutron irradiated type 304 stainless steel[J]. J. Nucl. Mater., 1996, 239: 90 | [3] | Stoller R E, Odette G R.The effects of helium implantation on microstructural evolution in an austenitic alloy[J]. J. Nucl. Mater., 1988, 154: 286 | [4] | Lewis M B, Farrell K.Migration behavior of helium under displacive irradiation in stainless steel, nickel, iron and zirconium[J]. Nucl. Instrum. Methods Phys. Res., 1986, 16B: 163 | [5] | Vassen R, Trinkaus H, Jung P.Helium desorption from Fe and V by atomic diffusion and bubble migration[J]. Phys. Rev., 1991, 44B: 4206 | [6] | Bloom E E. The challenge of developing structural materials for fusion power systems[J]. J. Nucl. Mater., 1998, 258-263: 7 | [7] | Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55 | [8] | Liu X Y, Xie W B, Chen W X, et al.Effects of grain boundary and boundary inclination on hydrogen diffusion in α-iron[J]. J. Mater. Res., 2011, 26: 2735 | [9] | Troiano A R.The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallogr. Microst. Anal., 2016, 5: 557 | [10] | Hirth J P.Effects of hydrogen on the properties of iron and steel[J]. Metall. Trans., 1980, 11A: 861 | [11] | Li M J, Hu H Y, Xing X S.The relationship between fatigue life and grain size of polycrystalline metals[J]. Acta Phys. Sin., 2003, 52: 2092(李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究[J]. 物理学报, 2003, 52: 2092) | [12] | Zhu L, Zhang A H.Mechanism of crack formation at hard brittle particles in steels[J]. Acta Phys. Sin., 2004, 53: 571(朱亮, 张爱华. 钢中脆硬粒子裂纹形成机理[J]. 物理学报, 2004, 53: 571) | [13] | Li X F, Fan T Y.Elastic analysis of a mode II crack in a decagonal quasi-crystal[J]. Chin. Phys., 2002, 11: 266 | [14] | Rice J R.Dislocation nucleation from a crack tip: An analysis based on the Peierls concept[J]. J. Mech. Phys. Solids, 1992, 40: 239 | [15] | Cao L X, Wang C Y.Phonon spectrum and related thermodynamic properties of microcrack in bcc-Fe[J]. Chin. Phys., 2006, 15: 2092 | [16] | Ma L, Xiao S F, Deng H Q, et al.Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading[J]. Int. J. Fatigue, 2014, 68: 253 | [17] | Uhnáková A, Machová A, Hora P.3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron[J]. Int. J. Fatigue, 2011, 33: 1182 | [18] | Uhnáková A, Pokluda J, Machová A, et al.3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II[J]. Comput. Mater. Sci., 2012, 61: 12 | [19] | Uhnáková A, Pokluda J, Machová A, et al.3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III[J]. Int. J. Fatigue, 2011, 33: 1564 | [20] | Ren G W, Tang T G.Coupling of two-dimensional atomistic and continuum models for dynamic crack[J]. Chin. Phys., 2014, 23B: 118704 | [21] | Zhou S J, Beazley D M, Lomdahl P S, et al.Large-scale molecular dynamics simulations of three-dimensional ductile failure[J]. Phys. Rev. Lett., 1997, 78: 479 | [22] | Cao L X, Wang C Y.Molecular dynamics simulation of fracture in α-iron[J]. Acta Phys. Sin., 2007, 56: 413(曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究[J]. 物理学报, 2007, 56: 413) | [23] | Wu W P, Yao Z Z.Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel[J]. Theoret. Appl. Fract. Mech., 2012, 62: 67 | [24] | Telitchev I Y, Vinogradov O.Numerical tensile tests of BCC iron crystal with various amounts of hydrogen near the crack tip[J]. Comput. Mater. Sci., 2006, 36: 272 | [25] | Kanezaki T, Narazaki C, Mine Y, et al.Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels[J]. Int. J. Hydrogen Energy, 2008, 33: 2604 | [26] | Song J, Curtin W A.Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nat. Mater., 2013, 12: 145 | [27] | Song H Y, Zhang L, Xiao M X.Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe[J]. Phys. Lett., 2016, 380A: 4049 | [28] | Martínez E, Schwen D, Caro A.Helium segregation to screw and edge dislocations in α-iron and their yield strength[J]. Acta Mater., 2015, 84: 208 | [29] | Stukowski A.Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool[J]. Modell. Simul. Mater. Sci. Eng., 2009, 18: 015012 | [30] | Guo L Y, Chen Z, Long J, et al.Study on the effect of stress state and crystal orientation on micro-crack tip propagation behavior in phase ?eld crystal method[J]. Acta Phys. Sin., 2015, 64: 178102(郭刘洋, 陈铮, 龙建等. 晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响[J]. 物理学报, 2015, 64: 178102) | [31] | Fujiwara H, Inomoto H, Sanada R, et al.Nano-ferrite formation and strain-induced-ferrite transformation in an SUS316L austenitic stainless steel[J]. Scr. Mater., 2001, 44: 2039 | [32] | Ohr S M.An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture[J]. Mater. Sci. Eng., 1985, 72: 1 | [33] | Yu X G, Gou F J, Tian X.Molecular dynamics study of the effect of hydrogen on the mechanical properties of tungsten[J]. J. Nucl. Mater., 2013, 441: 324 | [34] | Hull D.Twinning and fracture of single crystals of 3% silicon iron[J]. Acta Metall., 1960, 8: 11 | [35] | Bo?ansky J, ?mida T.Deformation twins-probable inherent nuclei of cleavage fracture in ferritic steels[J]. Mater. Sci. Eng., 2002, A323: 198 | [36] | Fu R, Rui Z Y, Yan C F, et al.Molecular dynamics simulation of micro-crack propagation behavior in single crystal γ-TiAl[J]. J. Funct. Mater., 2015, 46: 13100(付蓉, 芮执元, 剡昌锋等. 单晶γ-TiAl合金微裂纹扩展行为的分子动力学模拟[J]. 功能材料, 2015, 46: 13100) | [37] | Wu Q, Zikry M A.Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels[J]. J. Mech. Phys. Solids, 2015, 85: 143 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|