Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 31-38    DOI: 10.11900/0412.1961.2017.00202
  本期目录 | 过刊浏览 |
冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响
张可1,2(), 李昭东3, 隋凤利1,2, 朱正海1,2, 章小峰1,2, 孙新军3, 黄贞益1,2, 雍岐龙3
1 安徽工业大学冶金减排与资源综合利用教育部重点实验室 马鞍山 243032
2 安徽工业大学冶金工程学院 马鞍山 243032
3 钢铁研究总院工程用钢所 北京 100081
Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel
Ke ZHANG1,2(), Zhaodong LI3, Fengli SUI1,2, Zhenghai ZHU1,2, Xiaofeng ZHANG1,2, Xinjun SUN3, Zhenyi HUANG1,2, Qilong YONG3
1 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, Maanshan 243032, China;
2 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China
3 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(943 KB)   HTML
摘要: 

利用OM、EBSD、HRTEM和Vickers硬度计等手段研究了冷却速率对Ti-V-Mo复合微合金钢组织转变、析出相及硬度的影响,阐明了(Ti, V, Mo)C在不同冷却速率下的析出规律及其对显微组织和硬度的作用机理。结果表明,当冷却速率低于20 ℃/s时,随着冷却速率的增加,析出相平均尺寸由13.2 nm逐渐减小至6.9 nm,铁素体平均晶粒尺寸由5.06 μm逐渐细化至2.97 μm,硬度呈先快速增大而后缓慢增大的趋势,铁素体的细晶强化和(Ti, V, Mo)C的沉淀强化是硬度升高的主要因素;冷却速率为20~30 ℃/s,其对晶粒细化和沉淀强化的影响效果已趋于饱和,硬度基本保持不变,此时Ti-V-Mo复合微合金钢的硬度具有最大值410 HV,屈服强度高达1090 MPa。Ti-V-Mo复合微合金钢的硬度y与冷却速率x符合指数衰减关系:y=-229exp(-x/5)+412。

关键词 冷却速率Ti-V-Mo硬度析出相铁素体    
Abstract

Nanoscale co-precipitation strengthening in steels has attracted increasing attention in recent years and has become a new cornerstone for the development of advanced high performance steels with superior combination of strength and ductility. Rolling process, finishing temperature, cooling rate and coiling temperature are the main factors which affect the mechanical properties of microalloyed steels by changing the volume fraction and particle size of precipitates. Nevertheless, the influence of cooling rate on microstructure evolution, precipitates and mechanical properties of complex microalloyed ferritic Ti-V-Mo steel has been rarely reported. In this work, the precipitation law of (Ti, V, Mo)C carbides at different cooling rates and its effect on microstructue evolution and mechanical properties of Ti-V-Mo complex miroalloyed steel were studied by OM, EBSD, HRTEM and Vickers-hardness test. The results indicated that the hardness first increased quickly and then increased slowly as the cooling rate increased (lower than 20 ℃/s); the mean size of (Ti, V, Mo)C particles decreased from 13.2 nm to 6.9 nm and the average size of ferrite grain reduced from 5.06 μm to 2.97 μm; the hardness of Ti-V-Mo steel was improved by the means of grain refinement hardening and precipitation hardening. However, when the cooling rate increased from 20 ℃/s to 30 ℃/s, its effects on grain refinement hardening and precipitation hardening has become saturated, so the hardness was kept flat and achieved a maximum vlaue of 410 HV, and the yield strength reached as high as 1090 MPa. The hardness y of Ti-V-Mo microalloyed steel and cooling rates x accord with a exponential decay relationship: y=-229exp(-x/5)+412.

Key wordscooling rate    Ti-V-Mo    hardness    precipitate    ferrite
收稿日期: 2017-05-24     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目Nos.51704008和51674004,国家重点研发计划项目Nos.2017YFB0305100和2017YFB0304700,国家重点基础研究计划项目No.2015CB654803,中国钢研科技集团有限公司科技基金项目No.15G60530A及安徽工业大学青年科研基金项目No.QZ201603
作者简介:

作者简介 张 可,男,1983年生,博士

引用本文:

张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel. Acta Metall Sin, 2018, 54(1): 31-38.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00202      或      https://www.ams.org.cn/CN/Y2018/V54/I1/31

图1  Ti-V-Mo钢的热模拟工艺
图2  Ti-V-Mo钢在不同冷却速率下的OM像
图3  Ti-V-Mo钢在不同冷却速率下的EBSD像
图4  Ti-V-Mo钢在不同冷却速率下晶界的取向差分布
图5  Ti-V-Mo钢在不同冷却速率下的析出相及相应的EDS结果
图6  Ti-V-Mo钢不同冷却速率下的析出相尺寸分布
图7  Ti-V-Mo钢不同冷却速率下的硬度
图8  不同冷却速率下Ti-V-Mo钢屈服强度的变化
Cooling rate
℃s-1
Hardness
HV
Mean size of
precipitate / nm
Average grain
size / μm
1 225 13.2 5.06
5 330 11.3 4.54
15 394 6.9 2.97
25 410 6.4 2.63
表1  Ti-V-Mo钢在不同冷却速率下的组织参数
[1] Jiao Z B, Liu J C.Research and development of advanced nano-precipitate strengthened ultra-high strength steels[J]. Mater. China, 2011, 30(12): 6(焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展[J]. 中国材料进展, 2011, 30(12): 6)
[2] Jiao Z B, Luan J H, Miller M K, et al.Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era[J]. Mater. Today, 2017, 20: 142
[3] Lv Z P, Jiang S H, He J Y, et al.Second phase strengthening in advanced metal materials[J]. Acta Metall. Sin., 2016, 52: 1183(吕昭平, 蒋虽合, 何骏阳等. 先进金属材料的第二相强化[J]. 金属学报, 2016, 52: 1183)
[4] Kim Y W, Kim J H, Hong S G, et al.Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel[J]. Mater. Sci. Eng., 2014, A605: 244
[5] Chen J, Lv M Y, Tang S, et al.Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014, 50: 524(陈俊, 吕梦阳, 唐帅等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50: 524)
[6] Mukherjee S, Timokhina I, Zhu C, et al.Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel[J]. J. Alloys Compd., 2017, 690: 621
[7] Phaniraj M.P, Shin Y M, Lee J, et al.. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides[J]. Mater. Sci. Eng., 2015, A633: 1
[8] Li X L, Wang Z D.Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low-carbon microalloyed steel[J]. Acta Metall. Sin., 2015, 51: 417(李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51: 417)
[9] Chen C Y, Chen C C, Yang J R.Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel[J]. Mater. Charact., 2014, 88: 69
[10] Yi H L, Du L X, Wang G D, et al.Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening[J]. J. Iron Steel Res. Int., 2009, 16(4): 72
[11] Li X L, Wang Z D, Deng X T, et al.Effect of final temperature after ultra-fast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J]. Acta Metall. Sin., 2015, 51: 784(李小琳, 王昭东, 邓想涛等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51: 784)
[12] Zhang K, Yong Q L, Sun X J, et al.Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metall. Sin., 2016, 52: 529(张可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52: 529)
[13] Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al.. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel[J]. Mater. Sci. Eng., 2011, A528: 2559
[14] Wang Q, Sun T T, Bai Y Q.Effect of cooling rate on microstructure and mechanical properties of ultra-low carbon micro-alloyed steel[J]. Heat Treat. Met., 2015, 40(2): 148(王权, 孙婷婷, 白雅琼. 冷却速度对超低碳微合金钢组织和性能的影响[J]. 金属热处理, 2015, 40(2): 148)
[15] Ma F J, Wen G H, Tang P, et al.Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab[J]. Metall. Mater. Trans., 2011, 42B: 81
[16] Xu Y, Sun M X, Zhou Y L, et al.Precipitation behavior of (Nb, Ti)C in coiling process and its effect on micro-mechanical characteristics of ferrite[J]. Acta Metall. Sin., 2015, 51: 31(徐洋, 孙明雪, 周砚磊等. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51: 31)
[17] Sha Q Y, Li G Y, Yan P Y, et al.Effect of cooling rate and coiling temperature on the precipitates in ferrite of Nb-V-Ti microalloyed complex strip steel[J]. Mater. China, 2011, 30(12): 23(沙庆云, 李桂艳, 严平沅等. 冷却速度和卷取温度对Nb-V-Ti复合微合金带钢铁素体中析出的影响[J]. 中国材料进展, 2011, 30(12): 23)
[18] Zajac S, Siwecki T, Hutchinson B, et al.Recrystallization controlled rolling and accelerated cooling for high strength and toughness in V-Ti-N steels[J]. Metall. Mater. Trans., 1991, 22A: 2681
[19] Manohar P A, Chandra T.Continuous cooling transformation behaviour of high strength microalloyed steels for linepipe applications[J]. ISIJ Int., 1998, 38: 766
[20] Zhang K, Li Z D, Wang Z Q, et al.Precipitation behavior and mechanical properties of hot-rolled high strength Ti-Mo-bearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide[J]. J. Mater. Res., 2016, 31: 1254
[21] Yong Q L, Ma M T, Wu B R.Microalloyed Steel─Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 65(雍岐龙, 马鸣图, 吴宝榕. 微合金钢─物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 65)
[22] Gladman T, McIvor I D, Pickering F B. Some aspects of the structure-property relationships in high-carbon ferrite-pearlite steels[J]. J. Iron Steel Inst., 1972, 210: 916
[23] Kim Y W, Song S W, Seo S J, et al.Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule[J]. Mater. Sci. Eng., 2013, A565: 430
[24] Zhang K, Li Z D, Sun X J, et al.Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-Grade high-strength steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 641
[25] Pavlina E J, Van Tyne C J. Correlation of yield strength and tensile strength with hardness for steels[J]. J. Mater. Eng. Perform., 2008, 17: 888
[26] Xu Y.Study on ferrite transformation and nano-precipitation behaviors and mechanism of Ti micro-alloyed steel [D]. Shenyang: Northeastern University, 2015(徐洋. 钛微合金化钢中铁素体相变及纳米相析出行为与机理研究 [D]. 沈阳: 东北大学, 2015)
[1] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[2] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[3] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[4] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[5] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[6] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[7] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[8] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[9] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[10] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[11] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[12] 李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
[13] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[14] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[15] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.