Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1531-1537    DOI: 10.11900/0412.1961.2015.00115
  本期目录 | 过刊浏览 |
磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*
崔文芳(),曹栋,秦高梧
东北大学材料各向异性与织构(教育部)重点实验室, 沈阳 110819
MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING
Wenfang CUI(),Dong CAO,Gaowu QIN
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819
引用本文:

崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
Wenfang CUI, Dong CAO, Gaowu QIN. MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING[J]. Acta Metall Sin, 2015, 51(12): 1531-1537.

全文: PDF(3291 KB)   HTML
摘要: 

采用固定Ti间隔层厚度, 改变TiN层厚度的方法在Ti6Al4V合金表面制备Ti/TiN多层膜, 研究循环周期对Ti/TiN多层膜的相结构、形貌特征、结合力、硬度和在模拟人体液中摩擦磨损行为的影响. 结果表明, 与TiN单层膜相比, Ti/TiN多层膜中TiN由(111)择优取向转变为(200)择优取向, 多层膜表面粗糙度、硬度和结合力得到显著改善. 增加循环周期降低Ti/TiN多层膜表面硬度, 但有利于提高结合强度. 多层Ti/TiN膜的强韧化主要来自于TiN层的细晶强化和界面共格强化效应. 当TiN与Ti层厚度比为30, 循环周期为3时, Ti/TiN多层膜具有良好的综合性能, 硬度为15.8 GPa, 结合强度为50 N, 摩擦系数为0.35, 体积磨损率低于4.0×10-6 mm3/ (Nm).

关键词 Ti/TiN多层膜磁控溅射循环周期组织结构磨损性能    
Abstract

Ti and Ti alloys with low elastic modulus, good mechanical properties and biocompatibility have been widely used for dental implant, arthroplasty and internal fixation material in spinal fusion. But the poor wear resistance of Ti and Ti alloys generally results in the aseptic loosening of the implants. TiN coating has good chemical stability and biocompatibility in physiological environment and plays an important role in improving the corrosion wear performance of Ti and Ti alloys. However, the adhesion strength of TiN film prepared by traditional technologies does not meet the requirement of long service life of the implants. In this work, the alternating Ti/TiN multilayer films were prepared by magnetron sputtering technology with constant Ti layer thickness and varying TiN layer thickness. The cycling periods were designed to be 1, 3, 6, 9, and 12. The total depositing time was 185 min. The main aims of this investigation were to clarify the effects of the cycling periods on the surface morphologies, hardness, bonding strength, friction and abrasion behavior in simulated body fluid of Ti/TiN multilayer films. The results show that the total thickness of Ti/TiN multilayer film is in the range of 5.5~6.0 mm. (111)TiN preferred orientation is found in TiN monolayer film, and (002)TiN preferred orientation is found in Ti/TiN multilayer films. In comparison with TiN monolayer film, Ti/TiN multilayer films exhibit lower surface roughness, higher hardness, bonding strength and wear resistance. The strengthening and toughening of Ti/TiN multilayer films result from the refinement of columnar crystals and interface coherent effect between Ti and TiN layer. The increase of cycling period decreases the hardness of Ti/TiN multilayer film, but is beneficial to enhancing the bonding strength to the substrate. The rupture and exfoliation of thin TiN layer at outer surface promote the abrasive wear and oxidation wear. At the condition of layer thickness ratio 30 for TiN and Ti and 3 cyc, the Ti/TiN multilayer film has good combined mechanical properties. Hardness is 15.8 GPa, adhesion strength is 50 N, coefficient of friction is 0.35, and volume wear rate in Hank's solution is less than 4.0×10-6 mm3/ (Nm).

Key wordsTi/TiN multilayer film    magnetron sputtering    cycling period    microstructure    wear resistance
    
基金资助:* 教育部科学技术研究重大资助项目313014
图1  TiN单层膜和不同循环周期下Ti/TiN多层膜的XRD谱
图2  TiN单层膜和循环周期为3 cyc的Ti/TiN多层膜中TiN柱状晶SEM像
图3  TiN单层膜和Ti/TiN多层膜表面及截面的FE-SEM像
Cycle / cyc tTi / min tTiN / min dTi / nm dTiN / nm dTiN/dTi
1 10 175 150 5632 47
3 5 55 60 1770 30
6 5 25 60 805 13
9 5 15 60 483 8
12 5 10 60 322 5
表1  TiN单层膜和不同周期下Ti/TiN多层膜的Ti和TiN层的沉积时间和厚度
图4  TiN单层膜和Ti/TiN多层膜在Hank's溶液中的摩擦系数随时间的变化
Cycle / cyc H0.025 / GPa Fc / N
1 10.8 47
3 15.8 50
6 14.3 87
9 11.2 70
12 13.3 78
表2  不同周期下Ti/TiN多层膜的显微硬度和结合力
图5  TiN单层膜和Ti/TiN多层膜在Hank's溶液中磨损后的磨痕形貌
[1] Huang H H, Hsua C H, Pana S J, Heb J L, Chen C C, Lee T L. Appl Surf Sci, 2005; 244: 252
[2] Cheng Y, Zheng Y F. Surf Coat Technol, 2007; 201: 6869
[3] Jeong Y H, Lee C H, Chung C H, Son M K, Choe H C. Surf Coat Technol, 2014; 243: 71
[4] Zalnezhad E, Sarhan A A D, Hamdi M. Mater Sci Eng, 2013; A559: 436
[5] Zhang X H, Liu D X. Trans Nonferrous Met Soc China, 2009; 19: 557
[6] Yu X, Wang C B, Liu Y, Yu D Y. Acta Metall Sin, 2006; 42: 662
[6] (于 翔, 王成彪, 刘 阳, 于德洋. 金属学报, 2006; 42: 662)
[7] Liu C L, Lin G Q, Yang D Z, Qi M. Surf Coat Technol, 2006; 200: 4011
[8] Cheng Y, Zheng Y F. Mater Lett, 2006; 60: 2243
[9] Shao A L, Cheng Y, Zhou Y, Li M, Xi T F, Zheng Y F, Wei S C, Zhang D Y. Surf Coat Technol, 2013; 228: S257
[10] Liu T W, Dong C, Wu S, Tang K, Wang J Y, Jia J P. Surf Coat Technol, 2007; 201: 6737
[11] Shao H H, Peng Y T, Jiang X Y, Liu X L, Chen C, Zhu Z H. Funct Mater, 2014; 45: 14145
[11] (邵红红, 彭玉婷, 姜秀英, 刘雪丽, 陈 成, 朱姿虹. 功能材料, 2014; 45: 14145)
[12] Gong H F, Shao T M, Zhang C H, Xu J. J Inorg Mater, 2008; 23: 758
[12] (龚海飞, 邵天敏, 张晨辉, 徐 军. 无机材料学报, 2008; 23: 758)
[13] Serro A P, Completo C, Cola?o R, Santos F D, Lobato da Silva C, Cabral J M S, Araújo H, Pires E, Saramago B. Surf Coat Technol, 2009; 203: 3701
[14] Lin N M, Huang X B, Zhang X Y, Fan A L, Qin L, Tang B. Appl Surf Sci, 2012; 258: 7047
[15] Liu C L, Chu P K, Lin G Q, Yang D Z. Corros Sci, 2007; 49: 3783
[16] Wang L, Su J F, Nie X. Surf Coat Technol, 2010; 205: 1599
[17] Zhang S, Sun D, Fu Y, Du H. Surf Coat Technol, 2003; 167: 113
[18] Zhang G J, Wang T, Chen H L. Surf Coat Technol, 2015; 261: 156
[19] Zhang S, Fu Y, Du H, Zeng X T, Liu Y C. Surf Coat Technol, 2002; 162: 42
[20] Rebholz C, Monclus M A, Baker M A, Mayrhofer P H, Gibson P N, Leyland A, Matthews A. Surf Coat Technol, 2007; 201: 6078
[21] Xu X M, Wang J, Zhao Y, Zhang Q Y. Acta Phys Sin, 2006; 55: 5380
[21] (徐晓明, 王 娟, 赵 阳, 张庆瑜. 物理学报, 2006; 55: 5380)
[22] Zheng J Y, Hao J Y, Liu X Q, Gong Q Y, Liu W M. Surf Coat Technol, 2012; 209: 110
[23] Yip S. Nature, 1998; 391: 532
[24] Zhou D P, Peng H, Zhu L, Guo H B, Gong S K. Surf Coat Technol, 2014; 258: 102
[25] Naghibi S A, Raeissi K, Fathi M H. Mater Chem Phys, 2014; 148: 614
[26] Park J J, Choe H C, Ko Y M. Mater Sci Forum, 2007; 539-543: 1270
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[3] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[4] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[5] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[6] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[7] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[8] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[9] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[10] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[11] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[12] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[13] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[14] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[15] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.