Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 831-841    DOI: 10.11900/0412.1961.2015.00602
  论文 本期目录 | 过刊浏览 |
TC17钛合金电子束焊接接头的显微组织与力学性能研究*
于冰冰1,陈志勇1(),赵子博1,刘建荣1,王清江1,李晋炜2
1 中国科学院金属研究所, 沈阳 110016。
2 北京航空制造工程研究所, 北京 100024。
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17
Bingbing YU1,Zhiyong CHEN1(),Zibo ZHAO1,Jianrong LIU1,Qingjiang WANG1,Jinwei LI2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China.
引用本文:

于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
Bingbing YU, Zhiyong CHEN, Zibo ZHAO, Jianrong LIU, Qingjiang WANG, Jinwei LI. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17[J]. Acta Metall Sin, 2016, 52(7): 831-841.

全文: PDF(1470 KB)   HTML
摘要: 

研究了TC17钛合金电子束焊接接头的显微组织与力学性能. 研究表明, 焊接接头由熔合区(FZ)、热影响区(HAZ)和母材区(BM)组成. 焊态下, FZ由β柱状晶组成, HAZ由针状α/α'相、等轴α相和亚稳态β相组成. 在630~800 ℃范围焊后热处理后, FZ和HAZ中的亚稳态β相分解, 生成α相和β相, 随着焊后热处理温度的升高, FZ和HAZ中的α相板条厚度增加, 晶界α相发生粗化. 焊态和800 ℃, 2 h, A.C.焊后热处理条件下, FZ在450 ℃高温拉伸过程中会析出次生α相板条, 导致熔合区抗拉强度升高, 屈强比降低. 焊接接头的拉伸断裂优先发生于屈服强度低的区域, 接头各区域屈服强度相差不大时, 最终断裂发生在硬度较低的区域. TC17钛合金电子束焊接接头的最佳焊后热处理制度为630 ℃, 2 h, A.C., 此时焊接接头具有良好的拉伸强度和塑性匹配.

关键词 TC17钛合金电子束焊接显微组织力学性能    
Abstract

Most titanium alloys have been designed for aeronautical applications, where their excellent specific properties are fully employed and weldability is a classic problem with Ti and its alloys. Microstructure and mechanical properties of the electron beam weldments of TC17 alloy were investigated in this work. The results showed that there exhibited three zones across the TC17 electron beam weldment: the fusion zone (FZ), heat affected zone (HAZ) and base metal (BM). It was also observed that the as-welded FZ consisted of metastable β columnar grains, while the HAZ consisted of acicular α/α′ phase, equiaxed α phase and metastable β phase. Furthermore, it was indicated that the transformation from metastable β phase to α+β phase happened when the FZ and HAZ were post-weld heat treated at 630~800 ℃, the coarsening of α laths and the grain boundary α were also observed when the heat treatment temperature increased. The increasing of 450 ℃ ultimate tensile strength of FZ was ascribed to the precipitation of secondary acicular α platelets during tensile testing in the as-welded and 800 ℃ heat treated conditions, which led to the low yield ratio of FZ. The tensile failure location of the weldments was found to occur in preference in the low tensile yield strength area, or in the low hardness area when the difference between yield strength across the weldments is very small. It was concluded that the optimal post-weld heat treatment for the TC17 alloy weldment was 630 ℃, 2 h, A.C., at which the weldments showed good combination of tensile strength and elongation.

Key wordsTC17 titanium alloy    electron beam welding    microstructure    mechanical property
收稿日期: 2015-11-20     
图1  TC17钛合金锻件的显微组织
Heat treatment Process
S-PWHT1 630 ℃, 2 h, A.C.
S-PWHT2 700 ℃, 2 h, A.C.
S-PWHT3 800 ℃, 2 h, A.C.
D-PWHT2 700 ℃, 2 h, A.C.+630 ℃, 2 h, A.C.
D-PWHT3 800 ℃, 2 h, A.C.+630 ℃, 2 h, A.C.
表1  TC17钛合金焊接接头的焊后热处理工艺
图2  熔合区在拉伸试样中的位置示意图
图3  TC17钛合金电子束焊接接头的宏观组织
图4  焊态TC17钛合金电子束焊接接头FZ的微观组织
图5  焊态TC17钛合金电子束焊接接头FZ的XRD谱
图6  不同焊后热处理条件下TC17钛合金电子束焊接接头FZ的XRD谱
图7  不同焊后热处理条件下TC17钛合金电子束焊接接头熔合区的显微组织
图8  焊态TC17钛合金电子束焊接接头HAZ的SEM像
图9  焊态TC17钛合金电子束焊接接头near-HAZ 的TEM像及SAED谱
图10  不同热处理条件下TC17钛合金电子束焊接接头near-HAZ的SEM像
图11  焊态及不同热处理条件下TC17合金电子束焊接接头的显微硬度分布
图12  焊态和焊后不同热处理条件下TC17钛合金焊接接头FZ和BM的平均显微硬度
图13  β同晶型相图的伪二元相截面简图[2]
图14  S-PWHT3处理后TC17电子束焊接接头FZ的室温拉伸断口形貌
图15  焊态FZ经450 ℃拉伸后的TEM像
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ Failure location
Room temperature As-welded 840 996 6.0 FZ
S-PWHT1 1133 1188 9.8 BM
S-PWHT2 1017 1085 14.2 BM
S-PWHT3
D-PWHT2
886 904 16.3 BM
1041 1103 12.8 BM
D-PWHT3 1088 1159 4.8 FZ
450 ℃ As-welded 773 918 16.0 BM
S-PWHT1 770 903 14.0 BM
S-PWHT2 740 870 14.8 BM
S-PWHT3* 640 965 12.5 FZ
640 1000 20.0 BM
D-PWHT2 703 825 16.8 BM
D-PWHT3 763 893 8.3 FZ
表2  不同热处理条件下TC17钛合金电子束焊接接头的室温和450 ℃拉伸性能
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ σ0.2/σb
Room temperature

As-welded 792 878 11.0 0.90
S-PWHT1 1341 1368 2.5 0.98
S-PWHT2 1054 1084 6.3 0.97
S-PWHT3 867 878 7.7 0.98
D-PWHT2 1073 1108 6.0 0.97
D-PWHT3 1034 1089 7.3 0.95
450 ℃ As-welded 890 1280 4.0 0.70
S-PWHT1 927 1040 8.8 0.89
S-PWHT2 780 858 6.5 0.91
S-PWHT3 658 900 9.7 0.73
D-PWHT2 810 907 7.3 0.89
D-PWHT3 763 882 10.0 0.87
表3  不同热处理条件下TC17钛合金电子束焊接接头FZ的室温和450 ℃拉伸性能
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ σ0.2/σb
Room temperature


As received 1165 1220 10.3 0.95
S-PWHT1 1086 1120 10.5 0.97
S-PWHT2 1004 1034 15.3 0.97
S-PWHT3 944 971 16.0 0.97
D-PWHT2 1030 1058 12.5 0.97
D-PWHT3 1217 1273 10.0 0.96
450 ℃




As received 785 905 18.3 0.87
S-PWHT1 763 870 19.0 0.88
S-PWHT2 695 785 20.8 0.89
S-PWHT3 725 1045 22.0 0.69
D-PWHT2 713 813 17.5 0.88
D-PWHT3 850 975 19.0 0.87
表4  不同热处理条件下BM的室温和450 ℃拉伸性能
[1] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys. Beijing: Chemical Industry Press, 2005: 297
[1] (Leyens C, Peters M著, 陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 297)
[2] Lütjering G, Willams J C, translated by Lei T, Yang X Y, Fang S M. Titanium. 2nd Ed., Beijing: Metallurgical Industry Press, 2011: 8
[2] (Lütjering G, Willams J C著, 雷霆, 杨晓源, 方树铭译. 钛. 第二版, 北京: 冶金工业出版社, 2011: 8)
[3] Kou S, translated by Yan J C, Yang J G, Zhang G J. Welding Metallurgy. 2nd Ed., Beijing: Higher Education Press, 2012: 27
[3] (Kou S著, 阎久春, 杨建国, 张广军译. 焊接冶金学. 第二版, 北京: 高等教育出版社, 2012: 27)
[4] Qi Y L, Deng J, Hong Q, Zeng L Y.Mater Sci Eng, 2000; A280: 177
[5] Wang T, Guo H Z, Tan L J, Yao Z K, Zhao Y, Liu P H.Mater Sci Eng, 2011; A528: 6375
[6] Appolaire B, Da Costa Teixeira J, Aeby-Gautier E, Denis S, Cailletaud G, Spath N.Mater Sci Eng, 2007; A448: 135
[7] Wang J Y, Ge Z M, Zhou Y B.Titanium Alloy for Aerospace. Shanghai: Shanghai Science and Technology Press, 1985: 182
[7] (王金友, 葛志明, 周彦邦. 航空用钛合金. 上海: 上海科学技术出版社, 1985: 182)
[8] Lu W, Li X Y, Lei Y P, Shi Y W.Mater Sci Eng, 2012; A540: 135
[9] Pederson R, Niklasson F, Skystedt F, Warren R.Mater Sci Eng, 2012; A552: 555
[10] Prasad Rao K, Angamuthu K, Bala Srinivasan P.J Mater Process Technol, 2008; 199: 185
[11] Zhou L, Liu H J, Liu P, Liu Q W.Scr Mater, 2009; 61: 596
[12] Chen Z Y, Wang Q J, Liu J R, Li Y L, Yang R, Li J W, Liu F J.Acta Metall Sin, 2008; 44: 263
[12] (陈志勇, 王清江, 刘建荣, 李玉兰, 杨锐, 李晋炜, 刘方军. 金属学报, 2008; 44: 263)
[13] Chen Z Y, Li J W, Liu J, Wang Q J, Liu J R, Yang R.J Mater Sci Technol, 2010; 26: 564
[14] Ji Y, Wu S, Yu G.Fatigue Fract Eng Mater Struct, 2013; 37: 39
[15] Ma T J, Li W Y, Zhong B, Zhang Y, Li J L. Sci Technol Weld Joining, 2012; 17: 180
[16] Li W Y, Ma T J, Yang S Q.Adv Eng Mater, 2010; 12: 35
[17] Wang S Q, Liu J H, Chen D L.Mater Sci Eng, 2013; A584: 47
[18] Wang S Q, Liu J H, Chen D L.Mater Des, 2013; 49: 716
[19] Gogia A K.Def Sci J, 2005; 55(2): 147
[20] Chen Z Y.PhD Dissertation, Institute of Metal Research, Chinese Academy of Science, Shenyang, 2008
[20] (陈志勇. 中国科学院金属研究所博士学位论文, 沈阳, 2008)
[21] Sabol J C, Pasang T, Misiniolek W Z, Willams J C.J Mater Process Technol, 2012; 212: 2380
[22] Tang X, Ahmed T, Rack H J.J Mater Sci, 2000; 35: 1805
[23] Najdahmadi A, Zarei-Hanzaki A, Farghadani E.Mater Des, 2014; 54: 786
[24] Sakaguch N, Niinomi M, Akahori T.Mater Trans, 2004; 45: 1113
[25] Hao Y L, Niinomi M, Kuroda D, Fukunaga K, Zhou Y L, Yang R, Suzuki A.Metall Mater Trans, 2002; 33A: 3137
[26] Hao Y L, Yang R, Li S J, Cui Y Y, Li D.Acta Metall Sin, 2002; 38(z1): 236
[26] (郝玉琳, 杨锐, 李述军, 崔玉友, 李东. 金属学报, 2002; 38(z1): 236)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.