Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 831-841    DOI: 10.11900/0412.1961.2015.00602
  论文 本期目录 | 过刊浏览 |
TC17钛合金电子束焊接接头的显微组织与力学性能研究*
于冰冰1,陈志勇1(),赵子博1,刘建荣1,王清江1,李晋炜2
1 中国科学院金属研究所, 沈阳 110016。
2 北京航空制造工程研究所, 北京 100024。
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17
Bingbing YU1,Zhiyong CHEN1(),Zibo ZHAO1,Jianrong LIU1,Qingjiang WANG1,Jinwei LI2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China.
全文: PDF(1470 KB)   HTML
摘要: 

研究了TC17钛合金电子束焊接接头的显微组织与力学性能. 研究表明, 焊接接头由熔合区(FZ)、热影响区(HAZ)和母材区(BM)组成. 焊态下, FZ由β柱状晶组成, HAZ由针状α/α'相、等轴α相和亚稳态β相组成. 在630~800 ℃范围焊后热处理后, FZ和HAZ中的亚稳态β相分解, 生成α相和β相, 随着焊后热处理温度的升高, FZ和HAZ中的α相板条厚度增加, 晶界α相发生粗化. 焊态和800 ℃, 2 h, A.C.焊后热处理条件下, FZ在450 ℃高温拉伸过程中会析出次生α相板条, 导致熔合区抗拉强度升高, 屈强比降低. 焊接接头的拉伸断裂优先发生于屈服强度低的区域, 接头各区域屈服强度相差不大时, 最终断裂发生在硬度较低的区域. TC17钛合金电子束焊接接头的最佳焊后热处理制度为630 ℃, 2 h, A.C., 此时焊接接头具有良好的拉伸强度和塑性匹配.

关键词 TC17钛合金电子束焊接显微组织力学性能    
Abstract

Most titanium alloys have been designed for aeronautical applications, where their excellent specific properties are fully employed and weldability is a classic problem with Ti and its alloys. Microstructure and mechanical properties of the electron beam weldments of TC17 alloy were investigated in this work. The results showed that there exhibited three zones across the TC17 electron beam weldment: the fusion zone (FZ), heat affected zone (HAZ) and base metal (BM). It was also observed that the as-welded FZ consisted of metastable β columnar grains, while the HAZ consisted of acicular α/α′ phase, equiaxed α phase and metastable β phase. Furthermore, it was indicated that the transformation from metastable β phase to α+β phase happened when the FZ and HAZ were post-weld heat treated at 630~800 ℃, the coarsening of α laths and the grain boundary α were also observed when the heat treatment temperature increased. The increasing of 450 ℃ ultimate tensile strength of FZ was ascribed to the precipitation of secondary acicular α platelets during tensile testing in the as-welded and 800 ℃ heat treated conditions, which led to the low yield ratio of FZ. The tensile failure location of the weldments was found to occur in preference in the low tensile yield strength area, or in the low hardness area when the difference between yield strength across the weldments is very small. It was concluded that the optimal post-weld heat treatment for the TC17 alloy weldment was 630 ℃, 2 h, A.C., at which the weldments showed good combination of tensile strength and elongation.

Key wordsTC17 titanium alloy    electron beam welding    microstructure    mechanical property
收稿日期: 2015-11-20     

引用本文:

于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
Bingbing YU, Zhiyong CHEN, Zibo ZHAO, Jianrong LIU, Qingjiang WANG, Jinwei LI. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17. Acta Metall Sin, 2016, 52(7): 831-841.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00602      或      https://www.ams.org.cn/CN/Y2016/V52/I7/831

图1  TC17钛合金锻件的显微组织
Heat treatment Process
S-PWHT1 630 ℃, 2 h, A.C.
S-PWHT2 700 ℃, 2 h, A.C.
S-PWHT3 800 ℃, 2 h, A.C.
D-PWHT2 700 ℃, 2 h, A.C.+630 ℃, 2 h, A.C.
D-PWHT3 800 ℃, 2 h, A.C.+630 ℃, 2 h, A.C.
表1  TC17钛合金焊接接头的焊后热处理工艺
图2  熔合区在拉伸试样中的位置示意图
图3  TC17钛合金电子束焊接接头的宏观组织
图4  焊态TC17钛合金电子束焊接接头FZ的微观组织
图5  焊态TC17钛合金电子束焊接接头FZ的XRD谱
图6  不同焊后热处理条件下TC17钛合金电子束焊接接头FZ的XRD谱
图7  不同焊后热处理条件下TC17钛合金电子束焊接接头熔合区的显微组织
图8  焊态TC17钛合金电子束焊接接头HAZ的SEM像
图9  焊态TC17钛合金电子束焊接接头near-HAZ 的TEM像及SAED谱
图10  不同热处理条件下TC17钛合金电子束焊接接头near-HAZ的SEM像
图11  焊态及不同热处理条件下TC17合金电子束焊接接头的显微硬度分布
图12  焊态和焊后不同热处理条件下TC17钛合金焊接接头FZ和BM的平均显微硬度
图13  β同晶型相图的伪二元相截面简图[2]
图14  S-PWHT3处理后TC17电子束焊接接头FZ的室温拉伸断口形貌
图15  焊态FZ经450 ℃拉伸后的TEM像
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ Failure location
Room temperature As-welded 840 996 6.0 FZ
S-PWHT1 1133 1188 9.8 BM
S-PWHT2 1017 1085 14.2 BM
S-PWHT3
D-PWHT2
886 904 16.3 BM
1041 1103 12.8 BM
D-PWHT3 1088 1159 4.8 FZ
450 ℃ As-welded 773 918 16.0 BM
S-PWHT1 770 903 14.0 BM
S-PWHT2 740 870 14.8 BM
S-PWHT3* 640 965 12.5 FZ
640 1000 20.0 BM
D-PWHT2 703 825 16.8 BM
D-PWHT3 763 893 8.3 FZ
表2  不同热处理条件下TC17钛合金电子束焊接接头的室温和450 ℃拉伸性能
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ σ0.2/σb
Room temperature

As-welded 792 878 11.0 0.90
S-PWHT1 1341 1368 2.5 0.98
S-PWHT2 1054 1084 6.3 0.97
S-PWHT3 867 878 7.7 0.98
D-PWHT2 1073 1108 6.0 0.97
D-PWHT3 1034 1089 7.3 0.95
450 ℃ As-welded 890 1280 4.0 0.70
S-PWHT1 927 1040 8.8 0.89
S-PWHT2 780 858 6.5 0.91
S-PWHT3 658 900 9.7 0.73
D-PWHT2 810 907 7.3 0.89
D-PWHT3 763 882 10.0 0.87
表3  不同热处理条件下TC17钛合金电子束焊接接头FZ的室温和450 ℃拉伸性能
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ σ0.2/σb
Room temperature


As received 1165 1220 10.3 0.95
S-PWHT1 1086 1120 10.5 0.97
S-PWHT2 1004 1034 15.3 0.97
S-PWHT3 944 971 16.0 0.97
D-PWHT2 1030 1058 12.5 0.97
D-PWHT3 1217 1273 10.0 0.96
450 ℃




As received 785 905 18.3 0.87
S-PWHT1 763 870 19.0 0.88
S-PWHT2 695 785 20.8 0.89
S-PWHT3 725 1045 22.0 0.69
D-PWHT2 713 813 17.5 0.88
D-PWHT3 850 975 19.0 0.87
表4  不同热处理条件下BM的室温和450 ℃拉伸性能
[1] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys. Beijing: Chemical Industry Press, 2005: 297
[1] (Leyens C, Peters M著, 陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 297)
[2] Lütjering G, Willams J C, translated by Lei T, Yang X Y, Fang S M. Titanium. 2nd Ed., Beijing: Metallurgical Industry Press, 2011: 8
[2] (Lütjering G, Willams J C著, 雷霆, 杨晓源, 方树铭译. 钛. 第二版, 北京: 冶金工业出版社, 2011: 8)
[3] Kou S, translated by Yan J C, Yang J G, Zhang G J. Welding Metallurgy. 2nd Ed., Beijing: Higher Education Press, 2012: 27
[3] (Kou S著, 阎久春, 杨建国, 张广军译. 焊接冶金学. 第二版, 北京: 高等教育出版社, 2012: 27)
[4] Qi Y L, Deng J, Hong Q, Zeng L Y.Mater Sci Eng, 2000; A280: 177
[5] Wang T, Guo H Z, Tan L J, Yao Z K, Zhao Y, Liu P H.Mater Sci Eng, 2011; A528: 6375
[6] Appolaire B, Da Costa Teixeira J, Aeby-Gautier E, Denis S, Cailletaud G, Spath N.Mater Sci Eng, 2007; A448: 135
[7] Wang J Y, Ge Z M, Zhou Y B.Titanium Alloy for Aerospace. Shanghai: Shanghai Science and Technology Press, 1985: 182
[7] (王金友, 葛志明, 周彦邦. 航空用钛合金. 上海: 上海科学技术出版社, 1985: 182)
[8] Lu W, Li X Y, Lei Y P, Shi Y W.Mater Sci Eng, 2012; A540: 135
[9] Pederson R, Niklasson F, Skystedt F, Warren R.Mater Sci Eng, 2012; A552: 555
[10] Prasad Rao K, Angamuthu K, Bala Srinivasan P.J Mater Process Technol, 2008; 199: 185
[11] Zhou L, Liu H J, Liu P, Liu Q W.Scr Mater, 2009; 61: 596
[12] Chen Z Y, Wang Q J, Liu J R, Li Y L, Yang R, Li J W, Liu F J.Acta Metall Sin, 2008; 44: 263
[12] (陈志勇, 王清江, 刘建荣, 李玉兰, 杨锐, 李晋炜, 刘方军. 金属学报, 2008; 44: 263)
[13] Chen Z Y, Li J W, Liu J, Wang Q J, Liu J R, Yang R.J Mater Sci Technol, 2010; 26: 564
[14] Ji Y, Wu S, Yu G.Fatigue Fract Eng Mater Struct, 2013; 37: 39
[15] Ma T J, Li W Y, Zhong B, Zhang Y, Li J L. Sci Technol Weld Joining, 2012; 17: 180
[16] Li W Y, Ma T J, Yang S Q.Adv Eng Mater, 2010; 12: 35
[17] Wang S Q, Liu J H, Chen D L.Mater Sci Eng, 2013; A584: 47
[18] Wang S Q, Liu J H, Chen D L.Mater Des, 2013; 49: 716
[19] Gogia A K.Def Sci J, 2005; 55(2): 147
[20] Chen Z Y.PhD Dissertation, Institute of Metal Research, Chinese Academy of Science, Shenyang, 2008
[20] (陈志勇. 中国科学院金属研究所博士学位论文, 沈阳, 2008)
[21] Sabol J C, Pasang T, Misiniolek W Z, Willams J C.J Mater Process Technol, 2012; 212: 2380
[22] Tang X, Ahmed T, Rack H J.J Mater Sci, 2000; 35: 1805
[23] Najdahmadi A, Zarei-Hanzaki A, Farghadani E.Mater Des, 2014; 54: 786
[24] Sakaguch N, Niinomi M, Akahori T.Mater Trans, 2004; 45: 1113
[25] Hao Y L, Niinomi M, Kuroda D, Fukunaga K, Zhou Y L, Yang R, Suzuki A.Metall Mater Trans, 2002; 33A: 3137
[26] Hao Y L, Yang R, Li S J, Cui Y Y, Li D.Acta Metall Sin, 2002; 38(z1): 236
[26] (郝玉琳, 杨锐, 李述军, 崔玉友, 李东. 金属学报, 2002; 38(z1): 236)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.