Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 369-377    DOI: 10.11900/0412.1961.2015.00303
  论文 本期目录 | 过刊浏览 |
微量Fe对冷轧超细晶Cu-30Zn-0.15Fe合金等温退火组织演化的影响*
张笃秀1,李祎1,叶友雄1,沈阳志1,杨续跃1,2()
1 中南大学材料科学与工程学院, 长沙 410083
2 中南大学有色金属先进结构材料与制造协同创新中心, 长沙 410083
EFFECT OF MINOR Fe ADDITION ON MICROSTRUCTURE EVOLUTION OF ULTRAFINE GRAINED COLDROLLING Cu-30Zn-0.15Fe ALLOY SUBJECTED TO ISOTHERMAL ANNEALING
Duxiu ZHANG1,Yi LI1,Youxiong YE1,Yangzhi SHEN1,Xuyue YANG1,2()
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
引用本文:

张笃秀, 李祎, 叶友雄, 沈阳志, 杨续跃. 微量Fe对冷轧超细晶Cu-30Zn-0.15Fe合金等温退火组织演化的影响*[J]. 金属学报, 2016, 52(3): 369-377.
Duxiu ZHANG, Yi LI, Youxiong YE, Yangzhi SHEN, Xuyue YANG. EFFECT OF MINOR Fe ADDITION ON MICROSTRUCTURE EVOLUTION OF ULTRAFINE GRAINED COLDROLLING Cu-30Zn-0.15Fe ALLOY SUBJECTED TO ISOTHERMAL ANNEALING[J]. Acta Metall Sin, 2016, 52(3): 369-377.

全文: PDF(10704 KB)   HTML
摘要: 

采用OM, TEM, SEM/EBSD及硬度测试等手段, 研究了微量Fe对冷轧Cu-30Zn-0.15Fe合金在573 K下等温退火过程中组织演化的影响. 结果表明, Fe与合金中的杂质P形成hcp结构的Fe2P第二相颗粒, 其粒子尺寸为50~300 nm. 冷轧Cu-Zn和Cu-Zn-Fe合金的硬度曲线在退火过程中均分为3个阶段, 后者与前者相比第二阶段出现较晚. 当硬度趋于稳定时, Cu-Zn-Fe合金的硬度比Cu-Zn合金提高约30 HV. Fe2P粒子阻碍晶界迁移和位错运动, 使得Cu-Zn-Fe合金退火过程中的Σ3孪晶界的增加速度缓慢,质量分数减少, 组织内位错密度,储能较大. Fe2P粒子延迟了Cu-Zn-Fe合金再结晶的发生并抑制再结晶晶粒长大, 使其平均晶粒尺寸保持在1.3 μm左右. 合金的主要强化机制为第二相强化,细晶强化和位错强化.

关键词 Cu-30Zn-0.15Fe合金Fe2P显微组织退火再结晶    
Abstract

Cu-Zn alloys are one of the most commercially important metallic materials because of their excellent physical and mechanical properties, ease of fabrication and low cost. Ultrafine grained (UFG) metallic materials intrigue great interest due to their high strength, and most UFG materials are produced by severe plastic deformation (SPD). However, utilizing SPD to produce UFG materials needs large strain. Moreover, most UFG alloys produced by SPD have limited thermal stability and ductility which restrict the application in practical production. In this work, a UFG Cu-30Zn-0.15Fe alloy with good comprehensive properties and high thermal stability was prepared. Effect of minor Fe addition on the microstructure evolution of UFG Cu-Zn-Fe alloy subjected to cold rolling and subsequent isothermal annealing at 573 K was investigated through OM, TEM and SEM/EBSD observations. The results show that second phase particles are introduced into Cu-Zn-Fe alloy with trace P element by Fe addition. The second phase particles are identified as hcp structured Fe2P phase with diameters ranging at 50~300 nm. The hardness-annealing time curves of Cu-30Zn and Cu-30Zn-0.15Fe alloys have three stages, corresponding respectively to recovery, recrystallization and recrystallized grains growth. It takes longer time for Cu-Zn-Fe alloy to get recrystallization started; after fully annealed, the hardness of Cu-Zn-Fe alloy is much higher, with 30 HV increment than that of Cu-Zn alloy. The UFG Cu-Zn-Fe alloy has highly stable average grain size of 1.3 μm during the process of annealing, which results from Fe2P particles suppressing the growth of recrystallized grains. The Fe2P particles retard grain boundary migration and dislocation movement, resulting in less mass fraction of Σ3 twin boundaries, lower increasing speed, higher dislocation density and local stored energy. The main strengthening mechanisms for present UFG Cu-Zn-Fe alloy are second phase strengthening, fine-grain strengthening and dislocation strengthening.

Key wordsCu-30Zn-0.15Fe alloy    Fe2P    microstructure    annealing    recrystallization
收稿日期: 2015-06-09     
基金资助:* 国家自然科学基金资助项目51174234
图1  Cu-30Zn及Cu-30Zn-0.15Fe合金热轧后的OM像,TEM像和SAED谱
图2  Cu-30Zn及Cu-30Zn-0.15Fe合金冷轧后的OM像和TEM像
图3  Cu-30Zn和Cu-30Zn-0.15Fe合金的Vickers硬度随退火时间的变化
图4  Cu-30Zn及Cu-30Zn-0.15Fe合金在573 K退火3 h后的OM像和TEM像
图5  Cu-30Zn和Cu-30Zn-0.15Fe合金在573 K退火不同时间的EBSD像
图6  Cu-30Zn和Cu-30Zn-0.15Fe 合金在573 K退火时各晶界面积分数及平均晶粒尺寸随退火时间的变化
图7  Cu-30Zn和Cu-30Zn-0.15Fe 合金在573 K退火不同时间后的Kernel average misorientation (KAM)图
图8  Cu-30Zn 和Cu-30Zn-0.15Fe 合金在573 K退火不同时间后KAM分布函数图
[1] Peter L V, Liao X Z, Zhao Y H, Zhu Y T, Maxim M Y, Enrique L J, Valiev R Z, Ringer S P.Nat Commun, 2010; 1: 63
[2] Zhao Y H, Liao X Z, Jin Z, Valiev R Z, Zhu Y T.Acta Mater, 2004; 15: 4589
[3] Valiev R Z, Enikeev N A, Murashkin M Y, Kazykhanov V U, Sauvage X.Scr Mater, 2010; 9: 949
[4] Valiev R Z, Islamgaliev R K, Alexandrov I V.Prog Mater Sci, 2000; 45: 103
[5] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Pergamon Press, 2004: 451
[6] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G.Scr Mater, 2011; 64: 954
[7] Wu S D, An X H, Han W Z, Qu S, Zhang Z F.Acta Metall Sin, 2010; 46: 257
[7] (吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)
[8] Gong Y L, Wen C E, Li Y C, Wu X X, Cheng L P, Han X C, Zhu X K.Mater Sci Eng, 2013; A569: 144
[9] Zhao Y H, Liao X Z, Horita Z, Langdon T G, Zhu Y T.Mater Sci Eng, 2008; A493: 123
[10] Jiang Q W, Liu Y, Wang Y, Chao Y S, Li X W.Acta Metall Sin, 2009; 45: 873
[10] (姜庆伟, 刘印, 王尧, 晁月盛, 李小武. 金属学报, 2009; 45: 873)
[11] Molodova X, Gottstein G, Winning M, Hellmig R J.Mater Sci Eng, 2007; A460: 204
[12] Ye Y X, Yang X Y, Liu C Z, Shen Y Z, Zhang X K, Sakai T.Mater Sci Eng, 2014; A612: 246
[13] Carlsson B, Gölin M, Rundqvist.J Solid State Chem, 1973; 1: 57
[14] Bader M, Eldis G T, Warlimont H.Metall Trans, 1976; 2A: 249
[15] Konkova T, Mironov S, Korznikov A, Myshlyaev M M, Semiatin S L.Mater Sci Eng, 2013; A585: 178
[16] Mahajan S, Pande C S, Imam M M, Rath B.Acta Mater, 1997; 6: 2633
[17] Wright S I, Nowell M M, David F P.Microsc Microanal, 2011; 3: 316
[18] Takayama Y, Szpunar J A.Mater Trans, 2004; 7: 2316
[19] Dong Q Y, Shen L N, Cao F, Jia Y L, Wang M P.Acta Metall Sin, 2014; 10: 1224
[19] (董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴. 金属学报, 2014; 10: 1224)
[20] Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177
[21] Wen H M, Topping T D, Dieter I, David S N, Enrique L J.Acta Mater, 2013; 61: 2769
[22] Brown L M, Ham R K.Strengthening Methods in Crystals. London: Elsevier, 1971: 10
[23] Balogh L, Ungar T, Zhao Y H, Zhu Y T, Horita Z J, Xu C, Langdon T G.Acta Mater, 2008; 56: 809
[24] Chen X H, Lu L, Lu K.Scr Mater, 2011; 64: 311
[25] Kamikawa N, Huang X X, Tsuji N, Hansen N.Acta Mater, 2009; 57: 4198
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[8] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[9] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[14] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[15] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.