Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 143-150    DOI: 10.11900/0412.1961.2015.00279
  论文 本期目录 | 过刊浏览 |
横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率*
左小伟,郭睿,安佰灵,张林,王恩刚()
东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD
Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG()
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
引用本文:

左小伟,郭睿,安佰灵,张林,王恩刚. 横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率*[J]. 金属学报, 2016, 52(2): 143-150.
Xiaowei ZUO, Rui GUO, Bailing AN, Lin ZHANG, Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD[J]. Acta Metall Sin, 2016, 52(2): 143-150.

全文: PDF(3684 KB)   HTML
摘要: 

研究了横向磁场对定向凝固Cu-6%Ag合金组织、硬度和电阻率的影响. 结果表明, 施加磁场增加了先共晶Cu枝晶的一次枝晶间距和体积分数, 先共晶Cu中捕捉了更多的过饱和Ag, 最终升高了合金的硬度和电阻率. 从磁场抑制熔体对流作用的角度建立了一次枝晶间距与施加磁场强度、液相扩散系数等的关系, 并结合溶质分配系数的影响解释了Ag过饱和度增加的原因. 利用TEM和EDS分析结果, 结合建立的合金电阻率模型, 定量分析了合金电阻率的改变和固溶Ag原子对固溶体Cu-6%Ag合金导电性的主导作用.

关键词 Cu-Ag合金磁场微观组织硬度电阻率    
Abstract

Cu-Ag material with excellent combination of high strength and high conductivity is an important conductor for both direct current resistive and pulsed high-field magnets. The strength and electrical conductivity of Cu-Ag microcomposite are closely related to the microstructure of proeutectic Cu because of its high volume fraction. The morphology of proeutectic Cu, Ag precipitation and concentration of Ag in Cu can be controlled by application of external field and the addition of the third elements. In this work, the microstructural evolution, concentration contributions, the resulting microhardness and electrical resistivity of Cu-6%Ag alloy, which was directionally solidified under a transverse magnetic field were studied. The effect of the magnetic field on the microstructure was analyzed by OM, SEM, TEM and EDS. The results demonstrate that in macro scales, the growth direction of columnar grains is gradually deflected along the axial and heating flow directions with increasing magnetic field intensity. In micro scales, the increasing magnetic field increases both the primary dendrite arm spacing and volume fraction of proeutectic Cu, and traps more supersaturated Ag in proeutectic Cu. No obvious effect on the secondary dendrite arm spacing of proeutectic Cu is observed. In nano scales, SAED pattern in TEM indicates a small quantity of fine nanostructured Ag precipitations in proeutectic Cu. A relationship among the primary dendrite arm spacing, external magnetic field intensity and the initial diffusion coefficient in liquid was established from the viewpoint of suppressed convection by the magnetic field. The increased supersaturated Ag in proeutectic Cu is thought to be caused by the influence of magnetic field on the solute redistribution coefficient. The changes of microstructure induced by magnetic field result in the increases of the microhardness and electrical resistivity in Cu-6%Ag alloy. A model was proposed to clarify the changes of electrical resistivity in terms of the resistivity of Cu matrix, the impurity-scattering resistivity from dissolved Ag in Cu and the scattering resistivity from vacancy, where the interface-scattering resistivity from precipitation of Ag is assumed to be ruled out. The result shows that the impurity-scattering resistivity from dissolved Ag in Cu, which is increased by the application of external magnetic field, plays an important role in determining the overall resistivity of the alloy.

Key wordsCu-Ag alloy    magnetic field    microstructure    hardness    electrical resistivity
收稿日期: 2015-05-26     
基金资助:*国家自然科学基金项目51474066和51004038, 国家高技术研究发展计划项目2007AA03Z519, 高等学校博士学科点专项科研基金项目2012004211008及高等学校学科创新引智计划项目B07015资助
图1  施加横向磁场定向凝固设备示意图
图2  不同横向磁场作用下定向凝固Cu-6%Ag合金的宏观形貌、先共晶Cu枝晶形貌、共晶组织及TEM像
图3  不同磁场强度下定向凝固Cu-6%Ag合金的一次和二次枝晶间距及显微硬度和电阻率
图4  无、有横向磁场作用下定向凝固Cu-6%Ag合金凝固过程示意图
Magnetic field intensity
T
ρ0
nΩm
Δρss
nΩm
Δρvac
nΩm
ρ
nΩm
ρM
0 16.61 4.02 0.03 20.66 18.6
0.80 16.61 7.67 0.03 24.31 20.87
1.12 16.61 8.45 0.03 25.09 21.9
表1  Cu-6%Ag合金各电阻率的计算值和测量值
[1] Davy C A, Ke H, Kalu P N, Bole S T.IEEE Trans Appl Supercond, 2008; 18: 560
[2] Han K, Toplosky V, Goddard R, Lu J, Niu R, Chen J.IEEE Trans Appl Supercond, 2011; 22: 6900204
[3] Sakai Y, Schneider-Muntau H J.Acta Mater, 1997; 45: 1017
[4] Sakai Y, Inoue K, Asano T, Wada H, Maeda H.Appl Phys Lett, 1991; 59: 2965
[5] Han K, Vasquez A A, Xin Y, Kalu P N.Acta Mater, 2003; 51: 767
[6] Han K, Embury J D, Sims J R, Campbell L J, Schneider-Muntau H J, Pantsyrnyi V I, Shikov A, Nikulin A,Vorobieva A.Mater Sci Eng, 1999; A267: 99
[7] Morris D G, Benghalem A, Morris-Munoz M A.Scr Mater, 1999; 41: 1123
[8] Zuo X W, Han K, Zhao C C, Niu R M, Wang E G.Mater Sci Eng, 2014; A619: 319
[9] Zuo X W, Zhao C C, Wang E G, Zhang L, Han K, He J C.J Low Temp Phys, 2013; 170: 409
[10] Zuo X W, Zhao C C, Niu R M, Wang E G, Han K.J Mater Process Technol, 2015; 224: 208
[11] Liu J B, Zhang L, Meng L.Acta Metall Sin, 2006; 42: 937
[11] (刘嘉斌, 张雷, 孟亮. 金属学报, 2006; 42: 937)
[12] Liu J B, Meng L.Acta Metall Sin, 2006; 42: 931
[12] (刘嘉斌, 孟亮. 金属学报, 2006; 42: 931)
[13] Piyawit W, Xu W Z, Mathaudhu S N, Freudenberger J, Rigsbee J M, Zhu Y T.Mater Sci Eng, 2014; A610: 85
[14] Bittner F, Yin S, Kauffmann A, Freudenberger J, Klauss H, Korpala G, Kawalla R, Schillinger W, Schultz L.Mater Sci Eng, 2014; A597: 139
[15] Tian Y Z, Freudenberger J, Pippan R, Zhang Z F.Mater Sci Eng, 2013; A568: 184
[16] Lehmann P, Moreau R, Camel D, Bolcato R.J Cryst Growth, 1998; 183: 690
[17] Zuo X W, Wang E G, Han H, Zhang L, He J C.Acta Metall Sin, 2008; 44: 1219
[17] (左小伟, 王恩刚, 韩欢, 张林, 赫冀成. 金属学报, 2008; 44: 1219)
[18] Wang C J, Wang Q, Wang Y Q, Huang J, He J C.Acta Phys Sin, 2006; 55: 648
[18] (王春江, 王强, 王亚勤, 黄剑, 赫冀成. 物理学报, 2006; 55: 648)
[19] Li X, Fautrelle Y, Ren Z M.Acta Mater, 2007; 55: 3803
[20] Li X, Fautrelle Y, Ren Z M.Acta Mater, 2008; 56: 3146
[21] Li X, Fautrelle Y, Ren Z M, Gagnoud A, Moreau R, Zhang Y D, Esling C.Acta Mater, 2009; 57: 1689
[22] Li G M, Wang E G, Zhang L, Zuo X W, He J C.Acta Metall Sin, 2010; 46: 1128
[22] (李贵茂, 王恩刚, 张林, 左小伟, 赫冀成. 金属学报, 2010; 46: 1128)
[23] Li G M, Liu Y, Su Y, Wang E G, Han K.China Foundry, 2013; 10: 162
[24] Li G M, Wang E G, Zhang L, Zuo X W, He J C.Rare Met Mater Eng, 2012; 41: 701
[24] (李贵茂, 王恩刚, 张林, 左小伟, 赫冀成. 稀有金属材料与工程, 2012; 41: 701)
[25] Hunt J R.Solidification and Casting of Metals. London: The Metal Society, 1979: 3
[26] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11
[27] Trivedi R.Metall Trans, 1984; 15A: 977
[28] Hu H Q.Solidification Principle of Metal. 2nd Ed., Beijing: China Machine Press, 2000: 112
[28] (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 112)
[29] Botton V, Lehmann P, Bolcato R, Moreau R, Haettel R.Int J Heat Mass Transf, 2001; 44: 3345
[30] Gaganov A, Freudenberger J, Botcharova E, Schultz L.Mater Sci Eng, 2006; A437: 313
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[13] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[14] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.