Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1242-1252    DOI: 10.11900/0412.1961.2015.00265
  本期目录 | 过刊浏览 |
GH4033合金短时超温后的显微组织损伤及力学性能
童锦艳1,2,冯微1,3,付超2,郑运荣2,冯强1,2()
2 北京科技大学新金属材料国家重点实验室, 北京 100083
3 北京航空材料研究院熔铸中心, 北京 100095
MICROSTRUCTURAL DEGRADATION AND MECHANI- CAL PROPERTIES OF GH4033 ALLOY AFTER OVERHEATING FOR SHORT TIME
Jinyan TONG1,2,Wei FENG1,3,Chao FU2,Yunrong ZHENG2,Qiang FENG1,2()
1 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
3 Casting Center, Beijing Institute of Aeronautical Materials, Beijing 100095
全文: PDF(11597 KB)   HTML
摘要: 

对已服役的航空发动机用GH4033合金二级涡轮叶片榫头部位进行900~1100 ℃短时超温3 min热处理, 之后再进行组织表征和力学性能测试, 研究了短时超温过程中合金的组织损伤及其对室温硬度和700 ℃, 430 MPa下持久寿命的影响规律. 结果表明, GH4033合金中γ’相颗粒在短时超温过程中发生粗化和回溶现象, 当温度达到980 ℃及以上时, 保温3 min后γ’相完全回溶; 随着超温温度的升高, 晶界碳化物逐渐溶解, 1100 ℃时完全溶解, 并造成晶粒开始长大. 短时超温后叶片合金的室温硬度随着γ’相的回溶急剧下降, 当γ’相完全回溶时室温硬度降低至170 HV左右. 合金在700 ℃, 430 MPa下持久寿命随着短时超温温度的升高呈现先增大后急剧降低的规律, 其主要受γ’相的回溶与再析出以及晶界碳化物回溶的影响.

关键词 GH4033变形合金涡轮叶片超温显微组织持久性能    
Abstract

Service safety of turbine blades in aircraft engines are threatened by microstructural and property degradation instantly caused by overheating during service. Systematic investigations about microstructural degradation during overheating exposures and its influence on mechanical properties of turbine blades during service are limitedly reported. In this work, microstructure and mechanical properties of GH4033 alloy, which was sectioned from the shank of a serviced 2nd stage turbine blade in an aircraft engine, were studied after overheating at 900~1100 ℃ for 3 min. Microstructural degradation during overheating exposures as well as its influence on room temperature hardness and stress rupture life at 700 ℃, 430 MPa were analyzed. The results of microstructural characterization indicated that the coarsening and dissolution of γ’ precipitates were introduced by overheating exposures, and all of the γ’ precipitates dissolved at 980 ℃ for 3 min. Gradual dissolution of grain boundary (GB) carbides was observed with the increase of overheating temperature. Complete dissolution of GB carbides at 1100 ℃ resulted in grain growth. The room temperature hardness after overheating exposures decreased grossly with the dissolution of γ’ phase. Due to the dissolution and re-precipitation of γ’ phase as well as the dissolution of GB carbides, the stress rupture life under 700 ℃, 430 MPa of GH4033 alloy was initially increased and then decreased significantly.

Key wordsGH4033 wrought alloy    turbine blade    overheating    microstructure    rupture property
    
基金资助:* 国家高技术研究发展计划项目2012AA03A513和教育部技术支撑重点项目625010337资助

引用本文:

童锦艳,冯微,付超,郑运荣,冯强. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252.
Jinyan TONG, Wei FENG, Chao FU, Yunrong ZHENG, Qiang FENG. MICROSTRUCTURAL DEGRADATION AND MECHANI- CAL PROPERTIES OF GH4033 ALLOY AFTER OVERHEATING FOR SHORT TIME. Acta Metall Sin, 2015, 51(10): 1242-1252.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00265      或      https://www.ams.org.cn/CN/Y2015/V51/I10/1242

图1  GH4033合金二级涡轮叶片轮廓示意图及服役温度分布
图2  GH4033合金板状持久非标样试样示意图
图3  GH4033合金的原始微观组织
图4  GH4033 合金的DSC曲线
图5  原始状态GH4033合金和在1100 ℃超温处理3 min后的OM像
图6  原始状态和经不同温度超温处理3 min并水淬后GH4033 合金晶界碳化物的分布状态
图7  GH4033 合金经不同温度超温处理3 min 并水淬后基体中γ’相的形貌
图8  原始状态和经不同温度超温处理3 min 后GH4033合金的Vickers硬度
图9  GH4033 合金经不同温度超温处理3 min 后在700 ℃, 430 MPa下的持久寿命
Temperature / ℃ Size / nm Volume fraction / %
As-received 26±3 14.0
900 32±4 12.0
950 37±5 8.7
980~1100 - 0
表1  不同温度超温处理3 min 后GH4033 合金中γ’相颗粒的平均尺寸和体积分数
图10  不同温度超温处理3 min后GH4033 合金经700 ℃, 2 h 热处理并水淬后的晶界碳化物和γ’相形貌
图11  不同温度超温处理3 min后GH4033 合金断后的晶界碳化物和γ’相形貌
[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge, UK: Cambridge University Press, 2006: 18
[2] Guo J T. Materials Science and Engineering for Superalloys. Vol.3, Beijing: Science Press, 2010: 508 (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: 508)
[3] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F. Mater China, 2012; 31(12): 21 (冯 强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 21)
[4] Koul A, Wallace W. Met Mater Trans, 1983; 14A: 183
[5] Liburdi J, Lowden P, Nagy D, De Priamus T R, Shaw S. Proc ASME Turbo Expo, Orlando: International Gas Turbine Institute,2009: 819
[6] Yoo K B, Lee H S. Mater Sci Forum, 2010; 654-656: 2523
[7] Liu Q Q. Manufacture Technologies and Failure Analyses of Blades in Aircraft Engines. Beijing: Aviation Industry Press, 2011: 98 (刘庆瑔. 航空发动机叶片制造技术及失效分析. 北京: 航空工业出版社, 2011: 98)
[8] Tao C H. Faiture Analysis and Prevention for Rotor in Aero-Engine. Beijing: National Defense Industry Press, 2008: 1 (陶春虎. 航空发动机转动部件的失效与预防. 北京: 国防工业出版社, 2008: 1)
[9] Zhao W X, Li Y, Fan Y W, Zheng Y R. J Mater Eng, 2012; (8): 39 (赵文侠, 李 莹, 范映伟, 郑运荣. 材料工程, 2012; (8): 39)
[10] Tawancy H M, Al-Hdhrami L. Eng Fail Anal, 2008; 15: 1027
[11] Cai Y L,Zheng Y R. Metallographic Research of Superalloys. Beijing: National Defense Industry Press, 1986: 228 (蔡玉林,郑运荣. 高温合金的金相研究. 北京: 国防工业出版社, 1986: 228)
[12] Sun S Z, Li S Y, Zheng Y R. J Mater Eng, 1990; (3): 45 (孙淑珍, 李淑媛, 郑运荣. 材料工程, 1990; (3): 45)
[13] Li Y, Hou X Q, Tao C H, Jiang T. J Iron Steel Res, 2011; 23(suppl 2): 452 (李 莹, 候学勤, 陶春虎, 姜 涛. 钢铁研究学报, 2011; 23(增刊2): 452)
[14] Liu D L, Zhang W F, Li C G, Miao H B. Heat Treat Met, 2007; 32(1): 71 (刘德林, 张卫方, 李春光, 缪宏博. 金属热处理, 2007; 32(1): 71)
[15] Gao Y. New Manufacture Technologies, Metallograph Atlas and Manual for Data of Superalloys. Beijing: Science and Technology of China Press, 2006: 57 (高 原. 高温合金生产新工艺新技术与金相图谱及常用数据速用速查手册. 北京: 中国科技文化出版社, 2006: 57)
[16] Tong J Y, Ding X F, Wang M L, Zheng Y R, Yagi K, Feng Q. Mater Sci Eng, 2014; A618: 605
[17] Xu Y L, Jin Q M, Xiao X S, Cao X L, Jia G Q, Zhu Y M, Yin H J. Mater Sci Eng, 2011; A528: 4600
[18] Zhao Y, Gai X Y, Song G H. Phys Test Chem Anal: Phys Test, 2007; 43A: 498 (赵 越, 盖秀颖, 宋贵宏. 理化检验: 物理分册, 2007; 43A: 498)
[19] Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol: Edward Arnold Ltd, 1974: 33
[20] Richards E. J Inst Met, 1968; 96: 365
[21] Carter T J. Eng Fail Anal, 2005; 12: 237
[22] Zhang L H. Heat Treat, 2003; 18(3): 26 (张立红. 热处理, 2003; 18(3): 26)
[23] Ge T T. Master Thesis, University of Science and Technology Beijing, 2006 (葛婷婷. 北京科技大学硕士学位论文, 2006)
[24] Voice W E, Faulkner R G. Met Mater Trans, 1985; 16A: 511
[25] Furillo F T, Davidson J M, Tien J K, Jackman L A. Mater Sci Eng, 1979; A39: 267
[26] Iwashita C H. PhD Dissertation, Lehigh University, Bethlehem, 1998
[27] Bhowal P, Wright E, Raymond E. Met Trans, 1990; 21A: 1709
[28] Locq D, Caron P, Raujol S, Pettinari-Sturmel F, Coujou A, Clement N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Pennsylvania: TMS, 2004: 179
[29] Sun K J, Gai X Y, Li C X. Phys Test Chem Anal: Phys Test, 2009; 7A: 393 (孙克君, 盖秀颖, 李晨希. 理化检验: 物理分册, 2009; 7A: 393)
[30] Osada T, Nagashima N, Gu Y F, Yuan Y, Yokokawa T, Harada H. Scr Mater, 2011; 64: 892
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[11] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[12] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[13] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[14] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[15] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.