Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1049-1058    DOI: 10.11900/0412.1961.2015.00092
  本期目录 | 过刊浏览 |
Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响
曾宇翔1,郭喜平1(),乔彦强1,聂仲毅2
2 中钢集团西安重机有限公司, 西安 710077
EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS
Yuxiang ZENG1,Xiping GUO1(),Yanqiang QIAO1,Zhongyi NIE2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
2 Sinosteel Xi′an Heavy Machinery Co. Ltd., Xi′an 710077
全文: PDF(10943 KB)   HTML
摘要: 

采用真空非自耗电弧熔炼法制备了成分为Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr (x=0, 0.5, 1, 2, 4和8, 原子分数, %)的合金, 研究了Zr含量对合金电弧熔炼态组织及高温抗氧化性能的影响. 结果表明, 6种不同Zr含量的合金均由Nb固溶体和g-(Nb, X)5Si3 (X为Ti, Hf, Cr 和 Zr)组成, 添加Zr并未改变合金的相组成, 但随着Zr含量增加, 合金中初生g-(Nb, X)5Si3的尺寸增大, 含量提高. 对不同Zr含量合金在1250 ℃分别氧化1~50 h发现, 随着Zr含量的增加, 合金氧化膜黏附性及致密性均得到显著改善, Zr含量较高的合金(x=4和8)氧化50 h后, 氧化膜出现明显的分层现象: 最外层为致密的单相TiO2层, 中间层主要由ZrO2, TiNb2O7和TiO2组成, 而内层主要由Si的氧化物组成. 随着合金中Zr含量增加, 氧化膜厚度及单位表面积的氧化增重均显著降低, 抗氧化性能得到明显改善.

关键词 Nb-Ti-Si基超高温合金相组成显微组织高温氧化    
Abstract

Nb-Ti-Si base in situ composites which consist of Nb solid solution (Nbss) and silicides (a-Nb5Si3, b-Nb5Si3, g-Nb5Si3 and/or Nb3Si) phases, have shown great potential as alternative materials to Ni-based superalloys due to their high melting points (beyond 1700 ℃), good formability, low density (6.6~7.2 g/cm3) and high strength. However, a major hindrance to the applications of these alloys at elevated temperatures is their poor oxidation resistance. Alloying is an effective method to improve the integrated properties of the alloys, especially for the oxidation resistance. Up to now, many beneficial elements such as Ti, Al, Cr and Sn have been employed to ameliorate their oxidation resistance. Nevertheless, there is no systematic and comprehensive investigation on the effect of Zr contents on the microstructure and oxidation behavior of the alloys based on Nb-Ti-Si system. The aim of this work is to clarify the effects of Zr contents on phase selection, microstructure and high temperature oxidation resistance of Nb-Ti-Si based alloys in detail. The constituent phases, microstructure and composition of the alloys under as-cast state and after oxidation were investigated by OM, XRD, SEM and EDS. Thus, six Nb-Ti-Si base ultrahigh-temperature alloys with compositions of Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr (x=0, 0.5, 1, 2, 4, 8, atomic fraction, %) were prepared by vacuum non-consumable arc-melting. The results show that the alloys with different Zr contents are mainly composed of Nbss and g-(Nb, X)5Si3 (X represents Ti, Hf, Cr and Zr). However, the addition of Zr has an obvious affect on the microstructure of Nb-Ti-Si base alloys. Both the sizes and amounts of primary g-(Nb, X)5Si3 increase with increase in Zr contents. Alloys with different Zr contents were oxidized at 1250 ℃ for 1~50 h, respectively. It is found that both adhesion and compactness of the scales are improved effectively by increase in Zr contents. The scales of alloys with higher Zr contents (x=4 and 8) after oxidation for 50 h show an obvious layered structure: the outmost layer is only composed of TiO2, the middle layer mainly consists of ZrO2, TiNb2O7 and TiO2, and the inner layer is mainly comprised of Si-rich oxides. The mass gain per unit area and the thickness of the scale after oxidation decrease with increase in Zr contents in the alloys, indicating that the addition of Zr can improve the oxidation resistance of the alloys significantly.

Key wordsNb-Ti-Si base ultrahigh-temperature alloy    phase constituent    microstructure    high temperature oxidation
    
基金资助:* 国家自然科学基金项目51371145, 51431003, U1435201和51401166资助

引用本文:

曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
Yuxiang ZENG, Xiping GUO, Yanqiang QIAO, Zhongyi NIE. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS. Acta Metall Sin, 2015, 51(9): 1049-1058.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00092      或      https://www.ams.org.cn/CN/Y2015/V51/I9/1049

图1  Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr合金在电弧熔炼态的XRD谱
Alloy Phase Nb Ti Si Cr Al Hf Zr
0Zr Nbss 69.4 19.8 1.7 5.1 3.0 1.0 -
g-(Nb, X)5Si3 41.5 17.3 33.9 1.2 2.2 3.9 -
2Zr Nbss 60.7 24.1 1.6 8.3 3.1 1.8 0.4
g-(Nb, X)5Si3 40.1 15.0 35.1 0.4 2.5 3.9 3.0
8Zr Nbss 66.8 20.4 1.5 4.5 3.1 1.5 2.2
g-(Nb, X)5Si3 25.9 16.0 34.9 0.7 3.0 4.0 15.5
表 1  0Zr, 2Zr和8Zr合金中各相成分的EDS分析
图2  不同Zr含量Nb-Ti-Si基合金电弧熔炼态组织的BSE像
图3  不同Zr含量合金在1250 ℃的等温氧化动力学曲线
图4  不同Zr含量Nb-Ti-Si合金在1250 ℃氧化50 h后的宏观形貌
Alloy Phase O Nb Ti Si Cr Al Hf Zr
0Zr Nbss 56.6 31.3 8.6 0.1 1.9 1.2 0.3 -
g-(Nb, X)5Si3 20.9 36.1 11.4 26.2 0.8 1.9 2.7 -
2Zr Nbss 53.0 32.5 10.2 0.1 2.1 1.3 0.3 0.5
g-(Nb, X)5Si3 19.3 31.2 14.5 26.9 1.2 2.0 3.4 1.5
8Zr Nbss 52.5 31.5 2.4 0.4 4.0 6.8 0.5 1.9
g-(Nb, X)5Si3 14.6 29.1 10.8 29.0 0.3 2.3 2.7 11.2
表2  图6中0Zr, 2Zr和8Zr合金内氧化区中Nbss和g-(Nb, X)5Si3 的EDS成分分析
图5  0Zr, 2Zr和8Zr合金在1250 ℃氧化1, 5和20 h后氧化膜的XRD谱
图6  0Zr, 2Zr和8Zr合金经1250 ℃, 5 h氧化后氧化膜以及内氧化区横截面的BSE像
图7  0Zr, 2Zr和8Zr合金在1250 ℃氧化50 h后氧化膜的XRD谱
Alloy Point Phase O Nb Ti Si Al Cr Hf Zr
0Zr 1 Ti-rich oxide 73.7 9.0 9.4 1.5 1.4 3.9 1.1 -
2 Ti2Nb10O29 75.4 16.5 4.4 2.2 0.5 0.3 0.7 -
2Zr 3 Ti2Nb10O29 69.6 21.2 6.3 0.1 0.5 0.6 0.7 1.0
4 Si-rich oxide 74.3 9.8 2.8 11.6 0.3 0.2 0.5 0.5
5 Ti-rich oxide 67.4 9.8 12.6 0.5 2.1 5.4 1.3 0.9
8Zr 6 TiO2 71.7 8.1 11.6 0.1 1.0 5.0 0.6 1.9
7 ZrO2 72.6 6.2 1.0 5.7 0.9 0.2 2.8 10.6
8 TiNb2O7 72.4 15.4 9.5 0.1 0.4 0.1 0.5 1.6
9 Si-rich oxide 73.4 4.5 1.4 17.9 2.0 0.2 0.1 0.5
表3  0Zr, 2Zr和8Zr合金在1250 ℃氧化50 h所形成的氧化膜和内氧化区中各相的EDS成分分析
图8  0Zr, 2Zr和8Zr合金经1250 ℃, 50 h氧化后氧化膜横截面的BSE像
[1] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[2] Grammenos I, Tsakiropoulos P. Intermetallics, 2010; 18: 242
[3] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043
[4] Wu C L, Zhou L Z, Guo J T. Acta Metall Sin, 2006; 42: 1061 (伍春兰, 周兰章, 郭建亭. 金属学报, 2006; 42: 1061)
[5] Kang Y W, Qu S Y, Song J X, Han Y F. Acta Metall Sin, 2008; 44: 593 (康永旺, 曲士昱, 宋尽霞, 韩雅芳. 金属学报, 2008; 44: 593)
[6] Jia L N, Gao M, Ge J R, Zheng L J, Sha J B, Zhang H. Acta Metall Sin, 2011; 47: 88 (贾丽娜, 高 明, 盖京茹, 郑立静, 沙江波, 张 虎. 金属学报, 2011; 47: 88)
[7] Wang J, Guo X P, Guo J M. Chin J Aeronaut, 2009; 22: 544
[8] Zhang S, Guo X P. Intermetallics, 2015; 57: 83
[9] Xiong B W, Cai C C, Wan H, Zheng Y H. J Alloys Compd, 2009; 486: 330
[10] Guo J M, Guo X P, Song S G. Acta Metall Sin, 2008; 44: 574 (郭金明, 郭喜平, 宋曙光. 金属学报, 2008; 44: 574)
[11] Zelenitsas K, Tsakiropoulos P. Mater Sci Eng, 2006; A416: 269
[12] Geng J, Tsakiropoulos P, Shao G S. Mater Sci Eng, 2006; A441: 26
[13] Li Z F, Tsakiropoulos P. Intermetallics, 2012; 26: 18
[14] Wang L G, Jia L N, Cui R J, Zheng L J, Zhang H. Chin J Aeronaut, 2012; 25: 292
[15] Grammenos I, Tsakiropoulos P. Intermetallics, 2011; 19: 1612
[16] Geng J, Tsakiropoulos P. Intermetallics, 2007; 15: 382
[17] Behrani V, Thom A J, Kramer M J, Akinc M. Intermetallics, 2006; 14: 24
[18] Vellios N, Tsakiropoulos P. Intermetallics, 2010; 18: 1729
[19] Vellios N, Tsakiropoulos P. Intermetallics, 2007; 15: 1518
[20] Yuan W H, Liang Z Y. Mater Des, 2011; 32: 4195
[21] Mousa M, Wanderka N, Timpel M, Singh S, Krüger M, Heilmaier M, Banhart J. Ultramicroscopy, 2011; 111: 706
[22] Gorr B, Wang L, Burk S, Azim M, Majumdar S, Christ H J, Mukherji D, R?sler J, Schliephake D, Heilmaier M. Intermetallics, 2014; 48: 34
[23] Yu Q H, Zhou C G, Zhang H Y, Zhao F. J Eur Ceram Soc, 2010; 30: 889
[24] Li X, Guo X P, Qiao Y Q. Oxid Met, 2015; 83: 253
[25] Li X, Guo X P. Acta Metall Sin, 2012; 48: 1394 (李 轩, 郭喜平. 金属学报, 2012; 48: 1394)
[26] Tian Y X, Guo J T, Sheng L Y, Cheng G M, Zhou L Z, He L L, Ye H Q. Intermetallics, 2008; 16: 807
[27] Li X F, Guo X P. Acta Metall Sin, 2013; 49: 853 (李小飞, 郭喜平. 金属学报, 2013; 49: 853)
[28] Liu A Q, Sun L, Li S S, Han Y F. J Rare Earth, 2007; 25: 474
[29] Lee D B, Woo S W. Intermetallics, 2005; 13: 169
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[8] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[9] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[12] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[13] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[14] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[15] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.