Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1038-1048    DOI: 10.11900/0412.1961.2015.00035
  本期目录 | 过刊浏览 |
定向凝固DD6单晶高温合金枝晶组织均匀性研究
王玉敏,李双明(),钟宏,傅恒志
EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY
Yumin WANG,Shuangming LI(),Hong ZHONG,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
Yumin WANG, Shuangming LI, Hong ZHONG, Hengzhi FU. EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY[J]. Acta Metall Sin, 2015, 51(9): 1038-1048.

全文: PDF(9068 KB)   HTML
摘要: 

采用一次枝晶间距、最小生成树(minimum spanning tree, MST)、Voronoi多边形、FFT以及RO-XRD和EBSD等方法, 研究了DD6单晶高温合金枝晶分布的均匀性. 结果表明: DD6单晶高温合金一次枝晶平均间距为325.7 mm, 变化率7.38%. Voronoi多边形法给出的最近邻枝晶个数对应在5.87~5.93, 所占比例变化率超过30%; 另外, MST的枝干长度变化也比较明显, 达到26.95%, 不同位置处的FFT频谱也不同, 说明实验中选晶法获得的DD6单晶高温合金组织均匀性有待于进一步提高. 上述结果也表明, 定向凝固单晶高温合金枝晶生长是一个动态调整的过程, 通过测量一次枝晶间距结合Voronoi多边形和MST法可量证枝晶生长过程的变化程度, 而通常采用一次枝晶平均间距来衡量凝固过程稳定性是不充分的. 对选晶法获得的DD6单晶高温合金择优取向与轴向(Z轴)之间的偏离角进行了测量, 发现其值在10°以内, EBSD测试的结果比RO-XRD相应结果大, 这是由于RO-XRD在计算偏离角时选用了强度最大值所对应的衍射峰所致.

关键词 镍基单晶高温合金组织均匀性一次枝晶偏离角    
Abstract

Homogeneous distribution of primary dendritic arm spacing (PDAS) is required to achieve uniform mechanical properties in final product of single-crystal superalloys. In this work, the dendrite characterization and orientation of Ni-based single-crystal DD6 superalloy have been deeply investigated using different methods, which include minimum spanning tree (MST), Voronoi polygon-based approach, fast Fourier transform (FFT), as well as EBSD and RO-XRD. The investigation results indicate that the mean PDAS of DD6 superalloy is about 325.7 mm and its variation ratio is 7.38%. The measured Voronoi polygon parameters suggest that the number of nearest-neighbor dendrite ranges from 5.87 to 5.93, approximating six nearest neighbors in the spatial distribution of dendrite microstructures. However, the change in ratio of six nearest number proportion has exceeded 30% for the twenty specimens. The MST method shows that the change in branch length measured from the twenty specimens achieves 26.95%. Also, the analysis results of FFT imply that the dendrite microstructures of DD6 superalloy evolve apparently. These results give the proof that the dendrite microstructures of DD6 superalloy vary with the solidified distance. Additionally, the deviation angles between preferential orientations of DD6 with the axial direction of specimen were measured by EBSD and RO-XRD, respectively. The deviation angle values of DD6 superalloy in this experiment are both within 10°. The reason for the deviation angle measured by RO-XRD being smaller is well explained due to the fact of selecting the diffraction intensity maximum angles. Furthermore, the EBSD results indicate that the orientations of DD6 superalloy prepared by grain selector can be well controlled along the Z-axial direction, but do not work in other two X and Y directions.

Key wordsNi-based single-crystal superalloy    microstructure uniformity    primary dendrite    deviation angle
    
基金资助:*国家自然科学基金项目51323008, 中央高校基本科研业务费专项基金3102014JCQ01021及凝固技术国家重点实验室(西北工业大学)自主研究课题101-QP-2014资助
图1  DD6试棒切割示意图
图2  试样No.5, No.10和No.15的横截面微观组织图
图3  DD6单晶高温合金试样一次枝晶间距
图4  试样No.5和No.10的横截面枝晶分布图
图5  试样No.5和No.10的横截面组织Voronoi多边形示意图
图6  试样No.5和No.10中最近邻枝晶个数频率分布图
图7  Gauss拟合Voronoi多边形峰中心对应的位置以及峰高和峰宽的分布
图8  试样No.5和No.10的MST枝干长度分布图
图9  MST树枝干平均长度及Gauss拟合峰中心对应的位置、峰高和峰宽的分布
图10  试样Nos.1, 5, 10, 15, 20的横截面组织FFT频率谱
图11  DD6枝晶中心FFT振幅值
Specimen Dendrite Area Primary Voronoi polygon MST FFT
No. number mm2 spacing mm A0 A1 A2 Mean bra-nch length A0 A1 A2 Ratio amplitude
1 210 21751276.57 321.8 41.60 5.90 1.35 87.02 429.90 87.53 25.89 2.08 8117.846
2 215 21220032.87 314.1 43.74 5.89 1.27 87.07 441.80 87.98 27.62 2.06 8405.335
3 212 22488572.35 325.7 40.39 5.87 1.40 87.91 403.10 89.13 27.25 2.00 8276.027
4 203 21158138.35 322.8 42.63 5.90 1.30 86.82 390.60 88.44 26.69 2.07 8395.902
5 193 19431699.87 317.3 41.11 5.91 1.37 85.85 385.20 86.96 27.68 2.18 8413.233
6 210 22002644.94 323.6 42.67 5.89 1.31 85.66 394.50 87.13 27.13 2.08 8436.542
7 200 19719203.25 314.0 44.82 5.93 1.24 86.42 426.00 88.00 28.05 2.13 8451.840
8 192 19895756.68 321.9 42.28 5.89 1.32 86.20 398.70 87.49 27.83 2.12 8425.713
9 197 19820455.54 317.1 44.25 5.93 1.24 87.14 424.10 87.77 28.36 2.15 8380.658
10 192 20437536.55 326.2 45.05 5.92 1.23 87.28 405.30 88.22 28.57 2.46 8373.676
11 220 23248766.82 325.0 43.82 5.93 1.27 86.99 441.20 88.83 29.34 2.27 8387.368
12 213 21576577.82 318.2 43.14 5.90 1.29 87.71 365.40 88.67 29.00 2.16 8342.011
13 192 20622945.38 327.7 41.73 5.89 1.34 87.62 368.40 88.85 29.34 2.18 8306.541
14 178 19981068.01 335.0 45.03 5.90 1.22 89.12 344.50 90.85 29.41 2.15 8077.239
15 199 21659871.63 329.9 43.91 5.91 1.27 91.43 424.60 92.36 29.69 2.11 7795.426
16 205 21669559.48 325.1 44.15 5.90 1.26 89.96 340.00 91.42 29.65 2.22 8072.992
17 189 21058288.74 333.8 47.22 5.93 1.17 90.08 368.30 92.83 28.90 2.21 8223.490
18 187 21268318.61 337.2 49.87 5.92 1.10 91.69 421.80 93.70 27.73 2.08 8136.745
19 193 21429925.99 333.2 54.43 5.94 1.00 93.40 371.40 95.41 25.41 1.95 8161.441
20 210 22457648.34 327.0 53.32 5.91 1.03 93.84 447.70 96.33 22.04 1.88 8301.709
Change - - 7.38% 31.37% 1.19% 32.03% 9.25% 26.95% 10.42% 27.54% 27.27% 7.93%
ratio
表1  DD6横截面枝晶组织均匀性实验数据
图12  试样Nos.1, 3和15的横截面极图与反极图
图13  试样Nos.1, 3和15横截面[001]取向RO-XRD谱
图14  Gauss拟合RO-XRD结果图
Specimen No. q1 / (°) q2 / (°) Deviation angle / (°)
1 22.380 29.240 3.43
3 18.740 32.840 7.05
5 20.980 30.640 4.83
7 21.820 29.560 3.87
9 19.840 31.620 5.89
11 20.660 30.420 4.88
13 19.800 31.280 5.74
15 19.740 31.920 6.09
17 17.820 33.620 7.90
20 20.320 31.120 5.40
表2  试样Nos.1, 3, 5, 7, 9, 11, 13, 15, 17, 20的枝晶[001]方向与试样横截面轴向之间的偏离角
[1] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31(12): 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31(12): 1)
[2] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 1 (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 1)
[3] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281 (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[4] Zhang H, Xu Q Y, Shi Z X, Liu B C. Acta Metall Sin, 2014; 50: 345 (张 航, 许庆彦, 史振学, 柳百成. 金属学报, 2014; 50: 345)
[5] Warnken N, Reed R C. IOP Conf Ser: Mater Sci Eng, 2011; 27: 012012
[6] Brundidge C L, Vandrasek D, Wang B. Metall Mater Trans, 2012; 43A: 965
[7] Lamm M, Singer R F. Metall Mater Trans, 2007; 38A: 1177
[8] Zhao X B, Liu L, Yang C B, Zhang J, Li Y L, Fu H Z. J Mater Eng, 2012; (1): 93 (赵新宝, 刘 林, 杨初斌, 张 军, 李玉龙, 傅恒志. 材料工程, 2012; (1): 93)
[9] Han G M, Yu J J, Hu Z Q, Sun X F. Mater Charact, 2013; 86: 177
[10] McCartney D G, Hunt J D. Acta Metall, 1981; 29: 1851
[11] Tschopp M A, Miller J D, Oppedal A L, Solanki K N. Metall Mater Trans, 2014; 45A: 426
[12] Wilson B C, Cutler E R. Mater Sci Eng, 2008; A479: 356
[13] Xuan X, Xu L, Zeng C. Adv Mater Res, 2012; 452: 51
[14] Hu Z Q, Liu L R, Jin T, Sun X F. Aeroengine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[15] Tewari S N, Weng Y H, Ding G L, Trivedi R. Metall Mater Trans, 2002; 33A: 1229
[16] Guo Y H. Probability Theory and Mathematical Statistics. Beijing: Science Press, 2011: 99 (郭跃华. 概率论与数理统计. 北京: 科学出版社, 2011: 99)
[17] Datta A, Dutta S, Pal S K, Sen R. J Mater Pro Tech, 2013; 213: 2339
[18] Sweeney S M, Middleton A A. Phys Rev, 2013; 88(3): 1
[19] Gonzalez R C, translated by Ruan Q Q, Ruan Y Z. Digital Image Processing. Beijing: Publishing House of Electrionics Industry, 2007: 117 (Gonzalez R C著,阮秋琦,阮宇智译. 数字图像处理. 北京: 电子工业出版社, 2007: 117)
[20] Gao K, Li S M, Fu H Z. Adv Mater Lett, 2011; 2: 368
[21] He G, Li J G, Mao X M, Fu H Z. J Mater Eng, 1994; (2): 1 (何 国, 李建国, 毛协民, 傅恒志. 材料工程, 1994; (2): 1)
[22] Hui J, Tiwari R, Wu X, Tewari S N, Trivedi R. Metall Mater Trans, 2002; 33A: 3499
[23] Hunt D, Lu S Z. Metall Mater Trans, 1996; 27A: 611
[24] Liu J L. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2002 (刘金来. 中国科学院金属所博士学位论文, 沈阳, 2002)
[25] Onyszko A, Bogdanowicz W, Kubiak K. Cryst Res Technol, 2010; 61: 7
[26] Guo Z Q, Jin L, Li F. J Appl Phys, 2009; 42: 1
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[4] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[5] 杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.
[6] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[7] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[8] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[9] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[10] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[11] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[12] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[13] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
[14] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[15] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.