Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 985-992    DOI: 10.11900/0412.1961.2014.00652
  本期目录 | 过刊浏览 |
正挤压态Mg-1Zn-1Ca合金的显微组织及其在SBF溶液中的腐蚀行为*
张忠明1,2(),余凯1,任伟伟1,马莹1,徐春杰1,惠增哲2
2 西安工业大学材料与化工学院陕西省光电功能材料与器件重点实验室, 西安 710032
MICROSTRUCTURE OF DIRECTLY EXTRUDED Mg-1Zn-1Ca ALLOY AND ITS CORROSION BEHAVIOR IN SBF SOLUTION
Zhongming ZHANG1,2(),Kai YU1,Weiwei REN1,Ying MA1,Chunjie XU1,Zengzhe XI2
1 Key Laboratory of Electrical Materials and Infiltration Technology of Shaanxi Province, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2 Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032
引用本文:

张忠明,余凯,任伟伟,马莹,徐春杰,惠增哲. 正挤压态Mg-1Zn-1Ca合金的显微组织及其在SBF溶液中的腐蚀行为*[J]. 金属学报, 2015, 51(8): 985-992.
Zhongming ZHANG, Kai YU, Weiwei REN, Ying MA, Chunjie XU, Zengzhe XI. MICROSTRUCTURE OF DIRECTLY EXTRUDED Mg-1Zn-1Ca ALLOY AND ITS CORROSION BEHAVIOR IN SBF SOLUTION[J]. Acta Metall Sin, 2015, 51(8): 985-992.

全文: PDF(4083 KB)   HTML
摘要: 

通过合金化、均匀化热处理和正挤压制备Mg-1Zn-1Ca (质量分数, %)合金, 采用电化学方法、浸泡腐蚀法研究合金在人体模拟体液(SBF)中的腐蚀行为. 采用OM和SEM观察合金组织和腐蚀产物层形貌, 用SEM附带的EDS分析合金相成分和腐蚀产物成分, 采用Fourier变换红外吸收光谱对腐蚀产物官能团进行结构分析, 结合XRD结果确定腐蚀产物的相组成. 结果表明, Mg-1Zn-1Ca合金由a-Mg, Mg2Ca和Ca2Mg6Zn3组成. 在SBF溶液中浸泡72 h后, Mg-1Zn-1Ca合金的腐蚀产物为HA (Ca10(OH)2(PO4)6), CaCO3, MgCl2和Mg(OH)2. 在浸泡腐蚀过程中, 高活性的Mg2Ca相作为阳极率先发生腐蚀, 从而对周围a-Mg基体起到一定保护作用, 而Ca2Mg6Zn3相活性最低, 加剧了a-Mg基体的腐蚀. 正挤压态合金耐蚀性能优于铸态合金的耐蚀性能.

关键词 Mg-1Zn-1Ca合金正挤压微观组织SBF溶液腐蚀机理    
Abstract

The as-extruded Mg-1Zn-1Ca (mass fraction, %) alloys was fabricated successively by alloying, homogenization treatment and hot extrusion. The corrosion behavior of the alloy in simulated body fluid (SBF) solution was evaluated by electrochemical test and immersion test. The microstructure and morphology of corrosion product were observed by OM and SEM. Compositions of corrosion layer and different phases were investigated by EDS analysis. Fourier Transform infrared spectroscopy was also conducted to identify the functional groups in the corrosion products and XRD was also used to determine the phase constitutes of the corrosion products. The results show that Mg-1Zn-1Ca alloy consists of three phases, i.e. a-Mg, Mg2Ca and Ca2Mg6Zn3. After immersion in SBF solution for 72 h, the corrosion products is composed of HA (Ca10(OH)2(PO4)6), CaCO3, MgCl2 and Mg(OH)2. During the stage of immersion, the high active Mg2Ca phases act as the anode and corrode first, so they protect the around a-Mg substrate; the Ca2Mg6Zn3 phases are the lowest active, so they accelerate the corrosion of around α-Mg substrate. The corrosion resistance of as-cast Mg-1Zn-1Ca alloy are better than as-extruded alloy.

Key wordsMg-1Zn-1Ca alloy    direct extrusion    microstructure    SBF solution    corrosion mechanism
    
基金资助:* 陕西省科技计划项目2010K10-08, 陕西省教育厅科学研究计划项目2013JK0906和陕西省光电功能材料与器件重点实验室项目ZSKJ201302资助
图1  铸态Mg-1Zn-1Ca合金的OM像
图2  正挤压态Mg-1Zn-1Ca合金的OM像
图3  铸态Mg-1Zn-1Ca合金的XRD谱
图4  铸态Mg-1Zn-1Ca合金中第二相的SEM像
Area Mg Ca Zn
A 67.10 13.90 19.00
B 69.30 26.80 3.90
C 85.37 12.47 2.16
D 87.10 4.13 8.77
表1  铸态Mg-1Zn-1Ca合金中第二相的EDS分析结果
图5  正挤压态Mg-1Zn-1Ca合金的XRD谱
图6  铸态和正挤压态Mg-1Zn-1Ca合金的极化曲线
Alloy Corrosion potential V Corrosion current density mA/cm2 Corrosion rate mm/a
As-cast -1.6749 7.7251 4.2857
Directly extruded -1.6372 5.9425 3.2021
表2  铸态和正挤压态Mg-1Zn-1Ca合金在人体模拟体液(SBF)溶液中的电化学参数
图7  在SBF溶液中浸泡72 h后正挤压态Mg-1Zn-1Ca合金表面腐蚀产物的SEM像
Area C O Na Mg P Ca Cl
A 6.28 61.93 0.50 9.12 12.88 9.29 -
B 8.92 61.44 - 25.41 1.26 1.29 1.67
C 5.31 63.25 - 10.14 11.30 10.01 -
表3  正挤压态Mg-1Zn-1Ca合金在SBF溶液中浸泡72 h后表面腐蚀产物的EDS分析结果
图8  正挤压态Mg-1Zn-1Ca合金在SBF溶液中浸泡72 h后腐蚀产物的FT-IR谱
图9  正挤压态Mg-1Zn-1Ca合金在SBF溶液中浸泡72 h后腐蚀产物的XRD谱
图10  在SBF溶液中浸泡72 h并去除腐蚀产物后铸态与正挤压态Mg-1Zn-1Ca合金试样表面的腐蚀形貌
[1] Mark P S, Alexis M P. Biomaterials, 2006; 27: 1728
[2] Li K K, Wang B, Yan B. Corros Sci Protect Technol, 2012; 24: 181 (李锴锴, 王 冰, 严 彪. 腐蚀科学与防护技术, 2012; 24: 181)
[3] Moravej M, Mantovani D. Int J Mol Sci, 2011; 12: 4250
[4] Wen Z, Wu C, Dai C. J Alloys Compd, 2009; 488: 392
[5] Xin Y C, Huo K F, Tao H, Tang G Y, Chu P K. Acta Biomater, 2008; 4: 2008
[6] Hradilova M, Montheillet F, Frackiewicz A, Desrayaud C, Lejcek P. Mater Sci Eng, 2013; A580: 217
[7] Zhang X, Yuan G, Mao L, Niu J, Fu P, Ding W. Biomaterials, 2012; 7: 77
[8] Yin D S, Zhang E L, Zeng S Y. Trans Mater Heat Treat, 2009: 114: 118 (尹冬松, 张二林, 曾松岩. 材料热处理学报, 2009; 114: 118)
[9] Somekawa H, Mukai T. Mater Sci Eng, 2007; A459: 366
[10] Song W W, Martin H J, Hicks A, Seely D, Walton C A, Lawrimore II W B, Wang P T, Horstemeyer M F. Corros Sci, 2014; 78: 353
[11] Bakhsheshi-Rad H R, Abdul-kadir M R, Idris M H, Farahany S. Corros Sci, 2012; 64: 184
[12] Kokubo T, Takadama H. Biomaterials, 2006; 27: 2907
[13] Mao P L, Yu J C, Liu Z. Chin Trans Nonferrous Met Soc, 2013; 23: 889 (毛萍莉, 于金程, 刘 正. 中国有色金属学报, 2013; 23: 889)
[14] Wang Q, Wang J F, Huang S. J Mater Eng Perform, 2013; (11): 57 (汪 清, 王敬丰, 黄 崧. 材料工程, 2013; (11): 57)
[15] Liu C M,Zhu X R,Zhou H T. Phase Diagrams for Magnesium Alloys. Changsha: Central South University Press, 2006: 1 (刘楚明,朱秀荣,周海涛. 镁合金相图集. 长沙: 中南大学出版社, 2006: 1)
[16] Wasiur-Rahman S, Medraj M. Intermetallics, 2009; 17: 847
[17] Farahany S, Bakhsheshi-Rad H R, Idris M H, Abdul-kadir M R, Lotfabadi A F, Ourdjini A. Thermochim Acta, 2012; 527: 180
[18] Meng E C, Guan S K, Wang H X, Wang L G, Zhu S J, Hu J H, Ren C X, Gao J H, Feng Y S. Appl Surf Sci, 2011; 257: 4811
[19] Zhang X, Liang M J, Liao H H, Bai P K, Huang S. Hot Working Technol, 2014; 43(8): 9 (张 晓, 梁敏洁, 廖海洪, 白培康, 黄 莎. 热加工工艺, 2014; 43(8): 9)
[20] Fang S J, Liu Y H, Dong G D. Corros Sci Protect Technol, 2008; 20: 100 (方世杰, 刘耀辉, 佟国栋. 腐蚀科学与防护技术, 2008; 20: 100)
[21] Li Z J, Gu X A, Lou S Q. Biomaterials, 2008; 29: 1329
[22] Zhang S X, Zhang X N, Zhao C L, Li J N, Song Y, Xie C Y, Tao H R, Zhang Y, He Y H, Jiang Y, Bian Y J. Acta Biomater, 2010; 6: 626
[23] Du H, Wei Z J, Liu X W, Zhang E. Mater Chem Phys, 2011; 125: 568
[24] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E. Mater Des, 2014; 53: 283
[25] Kirkland N T, Birbilis N, Walker J, Woodfield T, Dias G J, Staiger M P. Biomed Mater Res, 2010; 95B: 91
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.