Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 519-526    DOI: 10.11900/0412.1961.2014.00591
  论文 本期目录 | 过刊浏览 |
B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*
王志胜1,陈祥1,2(),李言祥1,2,张华伟1,2,刘源1,2
1 清华大学材料学院, 北京 100084
2 清华大学先进成形制造教育部重点实验室, 北京 100084
EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL
Zhisheng WANG1,Xiang CHEN1,2(),Yanxiang LI1,2,Huawei ZHANG1,2,Yuan LIU1,2
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
引用本文:

王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. Acta Metall Sin, 2015, 51(5): 519-526.

全文: PDF(8296 KB)   HTML
摘要: 

采用热力学模拟试验机研究了铜合金压铸模具钢在850 ℃下的高温力学性能, 采用Uddeholm自约束法研究了模具钢在室温至800 ℃时的热疲劳性能, 采用光学体视显微镜和SEM研究了模具钢热疲劳试样的表面热疲劳裂纹和断面裂纹纵深扩展状态. 分析了B对材料室温及高温力学性能、热疲劳性能的影响. 结果表明, 添加B后, B在实验钢基体内以M2B (M为Fe, Cr或Mn)型硼化物的形式分布在奥氏体基体上, 有效提高了材料的高温力学性能, 材料硬度由200 HV提高到302 HV, 850 ℃拉伸屈服强度由144.3 MPa提高到190.3 MPa, 压缩屈服强度由139.7 MPa提高到167.9 MPa; 300 cyc室温至800 ℃循环热疲劳实验结果表明, 含B模具钢的热疲劳级别为2~3级, 大大优于用于对比的经电渣重熔的ESR-H13钢的7~8级, 其主要原因是硼化物能够终结热疲劳裂纹扩展或使裂纹扩展方向改变, 并避免热裂纹发生散射状扩散.

关键词 B压铸模具钢热疲劳性能铜合金压铸    
Abstract

Copper die-casting die steel is usually used in severe rugged environment. Liquid metal flows with high temperature and high pressure during injection and provides rapid filling of the die cavity. The copper die-casting steel should has excellent combination of the properties of high toughness, wear resistance, hardness, thermal fatigue resistance, oxidation resistance and corrosion resistance at high temperature for the cavity surface of die-casting die suffers high pressure, scour, erosion and thermal shock. A new kind of copper alloy die-casting die steel with pure austenitic matrix was conducted in this work, wherein the boride with high thermal stability and high hardness distributes in the austenitic matrix. The mechanical properties of copper alloy die-casting die steel at high temperature of 850 ℃ were studied using dynamic thermal-mechanical simulation testing machine. The thermal fatigue behavior of die steel at room temperature to 800 ℃ was performed using self-restraint Uddeholm thermal fatigue test method, and the depth extension status of surface thermal fatigue cracks and cross-sectional cracks in die steel thermal fatigue specimens was measured using stereo microscope and SEM. The effects of B content on the mechanical properties at room temperature and high temperature and on the thermal fatigue resistance were evaluated. The experimental results showed that boride distributes in austenitic matrix in the form of M2B-type boride (M represents Fe, Cr or Mn) after adding B in the tested steels, and the comprehensive performances of steel at high temperatures were effectively improved, the hardness of the steel at room temperature increased from 200 HV to 302 HV, the tensile yield strength at 850 ℃ increased from 144.3 MPa to 190.3 MPa, and the compressive yield strength increased from 139.7 MPa to 167.9 MPa. Evaluation of the degree of heat checking on 300 cyc of thermal fatigue testing at room temperature to 800 ℃ showed that the die steel containing B was rating 2~3, much better than rating 7~8 of electroslag remelting ESR-H13 steel for comparison, which mainly because the thermal fatigue cracks were blunted or deflected by boride, and then the cracks spread as scattering shapes was avoided.

Key wordsB    die-casting die steel    thermal fatigue property    copper alloy    die-casting
收稿日期: 2014-10-30     
基金资助:*国家自然科学基金资助项目50974080
作者简介: 王志胜, 男, 蒙古族, 1983年生, 博士生
Steel C B Cr Mn Si Ni Mo Cu V P S Fe
3Cr10Mn7Ni6SiCu 0.27 - 9.76 6.48 0.57 6.22 - 0.43 - 0.012 0.013 Bal.
3Cr10Mn7Ni6SiCuB0.7 0.29 0.65 9.86 6.71 1.17 6.06 - 0.49 - 0.012 0.010 Bal.
ESR-H13 0.39 - 5.11 0.47 1.01 - 1.29 - 0.93 0.009 0.005 Bal.
表 1  实验钢的化学成分
图 1  3Cr10Mn7Ni6SiCu铸态相的JMatPro模拟结果
图 2  热疲劳实验试样尺寸示意图
图 3  实验钢3Cr10Mn7Ni6SiCu与3Cr10Mn7Ni6SiCuB0.7的SEM像及EDS
图 4  实验钢在室温至800 ℃热疲劳300 cyc后的表面裂纹
Steel Rm MPa Rp0.2 MPa A % Z % Rp0.2/ Rm Rmc MPa Rpc0.2 MPa Rpc0.2/ Rmc
3Cr10Mn7Ni6SiCu 181.0 144.3 40.9% 53.3% 0.80 257.1 139.7 0.54
3Cr10Mn7Ni6SiCuB0.7 196.7 190.3 39.2% 48.8% 0.97 287.4 167.9 0.58
ESR-H13 130.0 90.0 50.4% 77.3% 0.69 184.0 116.0 0.63
表 2  实验钢在850 ℃的力学性能
图 5  3Cr10Mn7Ni6SiCu钢在室温至800 ℃热疲劳300 cyc后表面不同位置裂纹纵深扩展形态
图 6  3Cr10Mn7Ni6SiCuB0.7钢在室温至800 ℃热疲劳300 cyc后裂纹纵深扩展形态
图 7  3Cr10Mn7Ni6SiCuB0.7钢在室温至800 ℃热疲劳300 cyc后的OM像
图 8  3Cr10Mn7Ni6SiCuB0.7钢热疲劳前后的XRD谱
[1] Cui K. Heat Treat Met, 2007; 32(1): 1 (崔 崑. 金属热处理, 2007; 32(1): 1)
[2] Klobcar D, Tusek J, Taliat B. Mater Sci Eng, 2008; A472: 198
[3] Wallace F J, Schwam D. Die Cast Eng, 2000; 44(3): 50
[4] Zhu Y L, Schwan D, Wallace J F, Birceanu S. Mater Sci Eng, 2004; A379: 420
[5] Mesquita R A, Kestenbach H J. Mater Sci Eng, 2011; A528: 4856
[6] Medvedeva A, Bergstrom J, Gunnarsson S, Andersson J. Mater Sci Eng, 2009; A523: 39
[7] Li G B, Li X Z, Wu J J. J Mater Process Technol, 1998; 74: 23
[8] Persson A, Hogmark S, Bergstr?m J. J Mater Process Technol, 2004; 152: 228
[9] Kang J W, You R, Nie G, Hao X K, Long H M, Wang T J, Huang T Y. J Mech Eng, 2012; 48(12): 63 (康进武, 游 锐, 聂 刚, 郝小坤, 龙海敏, 王天骄, 黄天佑. 机械工程学报, 2012; 48(12): 63)
[10] Persson A, Hogmark S, Bergstr M J. J Mater Process Technol, 2004; 148: 108
[11] Khader I, Renz A, Kailer A, Haas D. J Eur Ceram Soc, 2013; 33: 593
[12] Norstrom L. Scand J Metall, 1982; 11: 33
[13] Kariofillis G K, Kiourtsidis G E, Tsipas D N. Surf Coat Technol, 2006; 201: 19
[14] Chen Y W, Wu X C. J Iron Steel Res, 2010; 22(7): 42 (陈英伟, 吴晓春. 钢铁研究学报, 2010; 22(7): 42)
[15] Cui K. Mater Mech Eng, 2001; 25(1): 1 (崔 崑. 机械工程材料, 2001; 25(1): 1)
[16] Jiang Q C, Sui H L, Guan Q F. ISIJ Int, 2004; 44: 1103
[17] Sui H L. PhD Dissertation, Jilin University, Changchun, 2006 (隋鹤龙. 吉林大学博士学位论文, 长春, 2006)
[18] Chen X, Zheng S, Yuan J Y. Procedia Eng, 2012; 27: 1780
[19] Chen X, Li Y X, Zhang H M. J Mater Sci, 2011; 46: 957
[20] Chen X, Li Y X. Mater Sci Eng, 2010; A528: 770
[21] Liu Z L, Li Y X, Chen X, Hu K H. Acta Metall Sin, 2007; 43: 477 (刘仲礼, 李言祥, 陈 祥, 胡开华. 金属学报, 2007; 43: 477)
[22] Liu Z L, Li Y X, Chen X. China Foundry, 2012; 9: 313
[23] Chen X, Li Y X. Mater Sci Eng, 2007; A444: 298
[24] Li Y X, Liu Z L, Chen X. Int J Cast Met Res, 2008; 21: 67
[25] Liu Z L, Chen X, Li Y X. J Iron Steel Res Int, 2009; 16(3): 37
[26] Liu Z L, Li Y X, Chen X. Mater Sci Eng, 2008; A486: 112
[27] Liu Z L. PhD Dissertation, Tsinghua University, Beijing, 2007 (刘仲礼. 清华大学博士学位论文, 北京, 2007)
[28] Chen X, Li Y X. China Foundry, 2013; 10: 155
[29] Benxi 1st Steelworks enxi 1st Steelworks. Boron Steel. Beijing: Metallurgical Industry Press, 1977: 39 (本溪钢铁公司第一炼钢厂. 硼钢. 北京: 冶金工业出版社, 1977: 39)
[30] Guo C, Kelly P M. Mater Sci Eng, 2003; A352: 40
[31] Ma S Q, Xing J D, Liu G F, Yi D W, Fu H G, Zhang J J, Li Y F. Mater Sci Eng, 2010; A527: 6800
[32] Guo C Q. PhD Dissertation, The University of Queensland, Brisbane, 2002
[33] Chu Y Y, He X L, Tang L, Xu T D, Ke J. Acta Metall Sin, 1987; 23: 169 (褚幼义, 贺信莱, 唐 立, 徐庭栋, 柯 俊. 金属学报, 1987; 23: 169)
[34] He X L, Chu Y Y, Ke J. Acta Metall Sin, 1983; 19: 459 (贺信莱, 褚幼义, 柯 俊. 金属学报, 1983; 19: 459)
[35] Jahazi M, Jonas J J. Mater Sci Eng, 2002; A335: 49
[36] He X L, Chu Y Y, Tang L, Zhou Z X, Ke J. Acta Metall Sin, 1987; 23: 291 (贺信莱, 褚幼义, 唐 立, 周振新, 柯 俊. 金属学报, 1987; 23: 291)
[37] Persson A, Hogmark S, Bergstr?m J. Int J Fatigue, 2004; 26: 1095
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[6] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[7] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[8] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[12] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[13] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[14] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[15] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.