Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 668-676    DOI: 10.11900/0412.1961.2014.00523
  论文 本期目录 | 过刊浏览 |
强制对流搅拌流变压铸AZ91D镁合金的组织与性能*
祁明凡,康永林(),周冰,朱国明,张欢欢
北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS
Mingfan QI,Yonglin KANG(),Bing ZHOU,Guoming ZHU,Huanhuan ZHANG
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(8320 KB)   HTML
摘要: 

依据强制对流搅拌原理, 成功自主研制出强制对流搅拌(FCM)制浆设备, 并与压铸机相结合, 以AZ91D镁合金力学拉伸件为例, 实现了浆料制备、输送到成形的一体化流变压铸过程; 研究了不同FCM工艺参数下流变压铸件组织特征的演变; 对比了不同工艺下压铸件力学性能的差异; 并分析了FCM流变压铸工艺组织形成机理及凝固行为. 结果表明: FCM工艺参数对铸件的显微组织有较大影响, 适当提高螺杆转速或降低筒体温度, 均有利于成形件组织形貌的改善; FCM流变压铸工艺不仅可以获得内部组织细小、圆整且分布均匀的成形件, 而且可以显著提高成形件的力学性能; 与传统压铸件相比, FCM流变压铸件的屈服强度变化不大, 抗拉强度和延伸率分别提高了12.5%和80.0%; 与经T4和T6热处理的铸件相比, 铸态拉伸件的抗拉强度最低, 屈服强度和伸长率介于T4和T6之间.

关键词 AZ91D镁合金强制对流搅拌流变压铸组织演变力学性能热处理    
Abstract

Based on the forced convection mixing (FCM) principle, a self-developed FCM semisolid slurry preparation device was successfully developed. Taking AZ91D magnesium alloy tensile parts for example, the rheo-diecasting process that consists of slurry preparation, transportation and forming was achieved by combining with a diecasting machine. Microstructural characteristics of FCM rheo-diecasting parts in different processing parameters were investigated. Mechanical properties of AZ91D alloy parts in different processes were compared. Besides, the formation mechanism and solidification behavior of semisolid slurry were analyzed in FCM rheo-diecasting process. The results show that processing parameters have a great effect on the microstructures of parts, increasing rotation speed or decreasing barrel temperature appropriately is beneficial to optimizing the microstructure. The process not only can produce parts with fine, spherical and uniformly distributed primary a-Mg particles, but also is able to improve mechanical performance of parts significantly. Compared with traditional diecasting, the yield strength remains unchanged, but the ultimate strength and elongation are increased by 12.5% and 80.0%, respectively. Furthermore, compared with parts subjected to T4 and T6 heat treatment, the ultimate strength of the as-cast is the lowest, and the yield strength and elongation are between T4 and T6.

Key wordsAZ91D magnesium alloy    forced convection mixing (FCM)    rheo-diecasting    microstructure evolution    mechanical properties    heat treatment
    
基金资助:* 国家重点基础研究发展计划项目2011CB606302和国家高技术研究发展计划项目2013AA031001

引用本文:

祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS. Acta Metall Sin, 2015, 51(6): 668-676.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00523      或      https://www.ams.org.cn/CN/Y2015/V51/I6/668

图1  强制对流搅拌(FCM)设备结构图及FCM流变压铸流程示意图
图2  FCM流变压铸力学性能拉伸件示意图
图3  不同螺杆转速下AZ91D镁合金流变压铸件的OM像
图4  筒体温度560 ℃时不同螺杆转速下AZ91D镁合金流变压铸件的初生a-Mg晶粒的平均尺寸和形状因子
图5  不同筒体温度下AZ91D镁合金流变压铸件的OM像
图6  螺杆转速500 r/min时不同筒体温度下AZ91D镁合金流变压铸件的初生a-Mg晶粒的平均尺寸和形状因子
Process Yield strength / MPa Ultimate strength / MPa Elongation / %
Traditional diecasting 144 200 2.5
FCM rheo-diecasting 138 225 4.5
FCM rheo-diecasting+T4 99 240 8.5
FCM rheo-diecasting+T6 156 245 3.5
表1  不同工艺下AZ91D镁合金压铸件的力学性能
图7  T4和T6热处理后流变压铸拉伸件的SEM像
图8  不同工艺下AZ91D镁合金压铸件的断口形貌
图9  晶粒游离示意图
图10  传统压铸和FCM流变压铸工艺合金熔体的凝固冷却过程
[1] Jiang J F, Wang Y, Li Y F, Shan W W. Luo S J. Mater Des, 2012; 37: 202
[2] Mustafa K K. Int J Adv Manuf Technol, 2008; 39: 851
[3] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[4] Tzamtzis S, Zhang H, Xia M, Hari Babu N, Fan Z. Mater Sci Eng, 2011; A528: 2664
[5] Le Q C, Ou P, Wu Y D, Lu G M, Cui J Z, Qiu Z X. Acta Metall Sin, 2002; 38: 219 (乐启炽, 欧 鹏, 吴跃东, 路贵民, 崔建忠, 邱竹贤. 金属学报, 2002; 38: 219)
[6] Zhao Z D, Chen Q, Chao H Y, Huang S H. Mater Des, 2010; 31: 1906
[7] Jiang J F, Wang Y, Chen G, Liu J, Li Y F, Luo S J. Mater Des, 2012; 40: 541
[8] Polmear L J. Mater Trans, 1996; 37: 12
[9] Chul K J, Chung G K. Hydrogen Energy, 2012; 37: 1661
[10] Lai H Q, Xu X, Fan H X. Met Form Technol, 2004; 22(2): 12 (赖华清, 徐 翔, 范宏训. 金属成形工艺, 2004; 22(2): 12)
[11] Yang L Q, Kang Y L, Zhang F, Ding R H, Li J. Trans Nonferrous Met Soc China, 2010; 20: 966
[12] Fan Z, Fang X, Ji S. Mater Sci Eng, 2005; A412: 298
[13] Zhou B, Kang Y L, Zhang J, Gao J Z, Zhang F. Solid State Phenomena, 2013; 192-193: 422
[14] Tzamtzis S, Zhang H, Hari Babu N, Fan Z. Mater Sci Eng, 2010; A527: 2929
[15] Guo D Y, Yang Y S, Dong W H, Hua F A, Cheng G F, Hu Z Q. Acta Metall Sin, 2003; 39: 914 (郭大勇, 杨院生, 童文辉, 花福安, 程根发, 胡壮麒. 金属学报, 2003; 39: 914)
[16] Flemings M C. Metall Trans, 1991; 22A: 957
[17] Ohno A. Solidification-the Separation Theory and Its Practical Applications. Berlin: Springer-Verlag Press, 1987: 36
[18] Trivedi R. J Cryst Growth, 1980; 48: 93
[19] Zhang X L, Li T J, Xie S S. Chin J Nonferrous Met, 2011; 21: 1881 (张小立, 李廷举, 谢水生. 中国有色金属学报, 2011; 21: 1881)
[20] Minkoff I. Solidification and Cast Structure. Chichester: John Wiley & Sons Ltd, 1986: 79
[21] Molenaar J M M, Katgerman L, Kool W H. J Mater Sci, 1986; 21: 389
[22] Guo H M, Yang X J, Luo X Q. J Alloys Compd, 2009; 482: 412
[23] Doherty R D, Lee H I, Feest E A. Mater Sci Eng, 1984; A65: 181
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[15] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.