|
|
定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为 |
孙衡,林小娉( ),周兵,赵圣诗,唐琴,董允 |
东北大学秦皇岛分校资源与材料学院 秦皇岛 066004 |
|
Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys |
SUN Heng,LIN Xiaoping( ),ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun |
School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China |
引用本文:
孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
Heng SUN,
Xiaoping LIN,
Bing ZHOU,
Shengshi ZHAO,
Qin TANG,
Yun DONG.
Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. Acta Metall Sin, 2020, 56(3): 340-350.
[1] | Liu C M, Ji R F, Zhou H T, et al. Research and development progress of damping capacity of magnesium and magnesium alloys [J]. Chin. J. Nonferrous Met., 2005, 15: 1319 | [1] | 刘楚明, 纪仁峰, 周海涛等. 镁及镁合金阻尼特性的研究进展 [J]. 中国有色金属学报, 2005, 15: 1319 | [2] | Wan D Q, Wang J C, Yang G C. A study of the effect of Y on the mechanical properties, damping properties of high damping Mg-0.6%Zr based alloys [J]. Mater. Sci. Eng., 2009, A517: 114 | [3] | Wang J F, Gao S, Pan F S, et al. Influence of process technology on mechanical and damping properties of ZK60 magnesium alloys [J]. Chin. J. Nonferrous Met., 2009, 19: 821 | [3] | 王敬丰, 高 珊, 潘复生等. 加工工艺对ZK60镁合金力学性能和阻尼性能的影响 [J]. 中国有色金属学报, 2009, 19: 821 | [4] | Kocks U F, Chandra H. Slip geometry in partially constrained deformation [J]. Acta Metall., 1982, 30: 695 | [5] | Hu Y K, Li Q S, Li J W, et al. Research on structure of Mg-3Zn-Y alloy and mechanical property under directional solidification [J]. Heavy Cast. Forg., 2017, (6): 6 | [5] | 胡延昆, 李秋书, 李建文等. 定向凝固下Mg-3Zn-Y合金组织和力学性能研究 [J]. 大型铸锻件, 2017, (6): 6 | [6] | Mabuchi M, Kobata M, Chino Y, et al. Tensile properties of directionally solidified AZ91 Mg alloy [J]. Mater. Trans., 2003, 44: 436 | [7] | Liu S J, Yang G Y, Jie W Q. Microstructure, microsegregation, and mechanical properties of directional solidified Mg-3.0Nd-1.5Gd alloy [J]. Acta Metall. Sin. (Engl. Lett)., 2014, 27: 1134 | [8] | Lin X P, Zhao T B, Dong Y, et al. Room-temperature tensile properties of a directionally solidified magnesium alloy and its deformation mechanism dominated by contraction twin and double twin [J]. Mater. Sci. Eng., 2017, A700: 681 | [9] | Molodov K D, Al-Samman T, Molodov D A, et al. On the ductility of magnesium single crystals at ambient temperature [J]. Metall. Mater. Trans., 2014, 45A:3275 | [10] | Yang H. Mechanical property and twinning behavior of Mg and Mg-Sn alloy single crystal in directional solidification [D]. Chongqing: Chongqing University, 2016 | [10] | 杨 鸿. 定向凝固下镁及镁锡合金单晶的力学性能和孪生行为研究 [D]. 重庆: 重庆大学, 2016 | [11] | Pettersen K, Lohne O, Ryum N. Dendritic solidification of magnesium alloy AZ91 [J]. Metall. Trans., 1990, 21A: 221 | [12] | Du J L, Guo Z P, Zhang A, et al. Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys [J]. Sci. Rep., 2017, 7: 13600 | [13] | Shuai S S, Guo E Y, Wang M Y, et al. Anomalous α-Mg dendrite growth during directional solidification of a Mg-Zn alloy [J]. Metall. Mater. Trans., 2016, 47A: 4368 | [14] | Yang M, Xiong S M, Guo Z. Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys [J]. Acta Mater., 2016, 112: 261 | [15] | Wang M Y, Xu Y J, Jing T, et al. Growth orientations and morphologies of α-Mg dendrites in Mg-Zn alloys [J]. Scr. Mater., 2012, 67: 629 | [16] | Li J L, Wu D, Chen R S, et al. Anomalous effects of strain rate on the room-temperature ductility of a cast Mg-Gd-Y-Zr alloy [J]. Acta Mater., 2018, 159: 31 | [17] | Zhang G S, Zhang Z M, Li X B, et al. Effects of repetitive upsetting-extrusion parameters on microstructure and texture evolution of Mg-Gd-Y-Zn-Zr alloy [J]. J. Alloys Compd., 2019, 790: 48 | [18] | Liu S J. Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd-based magnesium alloy [D]. Xi'an: Northwestern Polytechnical University, 2016 | [18] | 刘少军. Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究 [D]. 西安: 西北工业大学, 2016 | [19] | Zheng W, Wang G C, Wu T. Establishment of constitutive equation of material in region affected by grain boundary and numerical simulation of micro-bulk-forming [J]. J. Mech. Eng., 2011, 47(22): 31 | [19] | 郑 伟, 王广春, 吴 涛. 微体积成形晶界影响区域材料本构方程的构建及有限元模拟 [J]. 机械工程学报, 2011, 47(22): 31 | [20] | He J J, Mao Y, Lu S L, et al. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling [J]. Mater. Sci. Eng., 2019, A760: 174 | [21] | Wang Y C. Study on the anisotropy of mechanical behavior and deformation mechanisms of AZ31 Mg alloys by numerical simulation [D]. Shenyang: Northeastern University, 2014 | [21] | 王运程. AZ31镁合金各向异性力学行为及微观形变机制的模拟研究 [D]. 沈阳: 东北大学, 2014 | [22] | Cao X H. Monte carlo method of simulation grain growth [D]. Shanghai: East China University of Science and Technology, 2014 | [22] | 曹小虎. 晶粒生长的蒙特卡洛模拟方法研究 [D]. 上海: 华东理工大学, 2014 | [23] | Yu H H. Research on the relationship between boundary character and strengthening in Mg alloys [D]. Chongqing: Chongqing University, 2018 | [23] | 余辉辉. 镁合金中界面特征与细晶强化的关系研究 [D]. 重庆: 重庆大学, 2018 | [24] | Wang J, Beyerlein I J, Tomé C N. An atomic and probabilistic perspective on twin nucleation in Mg [J]. Scr. Mater., 2010, 63: 741 | [25] | Wang Z Q, Chapuis A, Liu Q. Simulation of mechanical behavior of AZ31 magnesium alloy during twin-dominated large plastic deformation [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3595 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|