Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 483-491    DOI: 10.11900/0412.1961.2014.00497
  本期目录 | 过刊浏览 |
铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能
王星(), 席文君, 崔跃, 李树杰
北京航空航天大学材料科学与工程学院, 北京100191
MICROSTRUCTURE EVOLUTION MECHANISM AND MECHANICAL PROPERTIES OF FeNiCrAl ALLOY REINFORCED BY COHERENT NiAl SYNTHE- SIZED BY THERMITE PROCESS
WANG Xing(), XI Wenjun, CUI Yue, LI Shujie
Materials Science & Engineering School, Beihang University, Beijing 100191
引用本文:

王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
Xing WANG, Wenjun XI, Yue CUI, Shujie LI. MICROSTRUCTURE EVOLUTION MECHANISM AND MECHANICAL PROPERTIES OF FeNiCrAl ALLOY REINFORCED BY COHERENT NiAl SYNTHE- SIZED BY THERMITE PROCESS[J]. Acta Metall Sin, 2015, 51(4): 483-491.

全文: PDF(8933 KB)   HTML
摘要: 

利用XRD, SEM, TEM等实验方法, 研究了铝热合成法制备的FeNiCrAl合金的微观组织, 并研究了铝热剂成分中Al含量对合金拉伸性能的影响. 结果表明, 当铝热剂中Al含量不超过25.4% (质量分数)时, 合金的主要组成相是奥氏体; 当铝热剂中Al含量达到26.6%时, 合金主要组成相为铁素体, 同时析出颗粒状的NiAl相; 随着Al含量继续增加, 颗粒状析出相逐渐被编织状组织所取代. 编织状组织的产生是液相调幅分解的结果. 铝热剂中Al含量的增加, 会降低合金的断后延伸率. 当铝热剂中Al含量为26.6%时, 合金的抗拉强度达到最大, 为640.87 MPa.

关键词 铝热反应NiAl拉伸性能液相调幅分解    
Abstract

The excellent thermal conductivity, low thermal expansion and high oxidation resistance of ferritic FeNiCrAl alloys, provide them with the potential to be replacements for nickel-based superalloys in high-temperature applications. However, their usage is limited, because of their poor high-temperature mechanical properties. The high melting point of NiAl intermetallic compounds, together with their excellent high temperature stability and similar lattice parameters to a-Fe, allow them to be used to coherently strengthen ferritic FeNiCrAl alloys to extend their high-temperature performance. Traditionally, these Fe(Ni, Cr)/NiAl alloys are prepared by vacuum reaction melting followed by an aging process. But the aging process has drawbacks including excessive cost, the length of aging time required and coarsening of the NiAl phase at high temperature. A more cost-effective thermite reaction process, was tried to prepare the Fe(Ni, Cr)/NiAl alloys. In this route, ferrite FeNiCrAl alloys were strengthened by a high volume fraction nanoscale-NiAl phase which was achieved without using the aging process. Several types of thermites were designed and studies were conducted to explore the transformations of the alloy microstructures and the changes of the tensile properties with the various thermite compositions. The microstructures of these thermites synthesized Fe(Ni, Cr)/NiAl alloys were investigated using XRD, SEM, EDS, TEM and SAED. The effect of Al content in the thermites on the microstructures of the alloys was studied. Experimental results showed that when the thermites contained no more than 25.4% (mass fraction) of Al, the synthesized Fe(Ni, Cr)/NiAl alloys were composed primarily of an austenite phase. The main component phase of the alloy composites was transformed into ferrite when the mass fraction of Al in the thermites was 26.6%, meanwhile the NiAl particle precipitates arose. As the Al content of the mixture was further increased, the NiAl precipitates were gradually replaced by an intertexture structure. The intertexture structure was totally dominant when the mass fraction of Al in the thermites was 31.4%. Experimental results showed that this intertexture microstructure material was composed of a ferritic FeNiCrAl matrix with a width of 80~100 nm and NiAl precipitates with a width of about 50 nm, and the two phases matched coherently. This microstructure resulted from liquid spinodal decomposition. The effect of Al content on the mechanical properties of the alloys was also investigated. The increase of the Al content in the thermites resulted in a decrease of the elongation of the alloys, which varied from 25.5% to 1.7% when the mass fraction of Al ranged from 24.2% to 29.0%. When the thermites contained 26.6% mass fraction of Al, the tensile strength of the alloy achieved its maximum value of 640.87 MPa.

Key wordsthermite process    NiAl    tensile property    liquid spinodal decomposition
    
ZTFLH:  TG148  
基金资助:*国家自然科学基金资助项目51472015
作者简介: null

王 星, 男, 1989年生, 硕士生

图1  铝热反应合成装置图
Specimen No. CrO3 Cr2O3 Al NiO Fe2O3
1 15.6 9.8 24.2 13.6 36.8
2 15.4 9.6 25.4 13.4 36.2
3 15.2 9.5 26.6 13.2 35.5
4 14.9 9.4 27.8 12.9 35.0
5 14.6 9.2 29.0 12.8 34.4
6 14.4 9.0 30.2 12.6 33.8
7 14.2 8.9 31.4 12.3 33.2
表1  实验所用铝热剂物质及含量
图2  不同铝热剂成分下Fe(Ni, Cr)/NiAl合金的SEM像
图3  不同铝热剂成分下Fe(Ni, Cr)/NiAl合金的XRD谱
Composition Fe Ni Cr Al
Atomic fraction / % 54.30 20.78 23.64 1.28
Mass fraction / % 54.97 22.11 22.29 0.63
表2  铝热剂中Al含量为24.2%时合金的EDS分析结果
Composition Fe Ni Cr Al
Atomic fraction / % 50.67 21.75 26.11 1.47
Mass fraction / % 51.41 23.20 24.67 0.72
表3  铝热剂中Al含量为26.6%时合金的EDS分析结果
图4  合金中方块状析出相、编织状组织、以及方块状析出相和编织状组织过渡区域的TEM像和SAED谱
图5  铝热剂中Al含量为31.4%时制备的Fe(Ni, Cr)/NiAl合金未经时效和在不同温度下时效100 min后的SEM像
图6  不同铝热剂成分下Fe(Ni, Cr)/NiAl合金的拉伸应力-应变曲线
图7  Fe(Ni, Cr)/NiAl合金的抗拉强度及延伸率随铝热剂中Al含量的变化曲线
图8  不同的铝热剂成分下Fe(Ni, Cr)/NiAl合金拉伸断口的SEM像
[1] Masuyama F. ISIJ Int, 2001; 41: 612
[2] Calderon H, Fine M E. Mater Sci Eng, 1984; 63: 197
[3] Pearson W B. A Handbook of Lattice Spacings and Structures of Metals and Alloys. Oxford: Pergamon Press, 1958: 347
[4] Stallybrass C, Schneider A, Sauthoff G. Intermetallics, 2005; 13: 1263
[5] Sudbrack C K, Yoon K E, Noebe R D, Seidman D N. Acta Mater, 2006; 54: 3199
[6] Calderon H A, Fine M E, Weertman J R. Metall Trans, 1988; 19A: 1135
[7] Hao S M, Ishida K, Nishizawa T. Metall Trans, 1985; 16A: 179
[8] Stallybrass C, Sauthoff G. Mater Sci Eng, 2004; A387: 985
[9] Vo N Q, Liebscher C H, Rawlings M J, Asta M, Dunand D C. Acta Mater, 2014; 71: 89
[10] Bradley A J, Taylor A. Proc R Soc London, 1938; 166(A926): 353
[11] Yin S. Combustion Synthesis. Beijing: Metallurgical Industry Press, 2004: 1
[11] (殷 声. 燃烧合成. 北京: 冶金工业出版社, 2004: 1)
[12] Borovinskaya I P. Pure Appl Chem, 1992; 64: 919
[13] Yukhvid V I. Pure Appl Chem, 1992; 64: 977
[14] Fu Z Y. Acta Mater Comp Sin, 2000; 17(1): 5
[14] (傅正义. 复合材料学报, 2000; 17(1): 5)
[15] Hao S M, Takayama T, Ishida K, Nishizawa T. Metall Trans, 1984; 15A: 1819
[16] Bradley A J. J Iron Steel Inst, 1949; 163: 19
[17] Bradley A J. J Iron Steel Inst, 1951; 168: 233
[18] Bradley A J. J Iron Steel Inst, 1952; 171: 41
[19] Hanna J A, Baker I, Wittmann M W, Munroe P R. J Mater Res, 2005; 20: 791
[20] Cahn J W. Acta Metall, 1961; 9: 795
[21] Cahn J W. Acta Metall, 1962; 10: 179
[22] Cahn J W. Acta Metall, 1962; 10: 907
[23] Xi W, Peng R L, Wu W, Li N, Wang S, Johansson S. J Mater Sci, 2012; 47: 3585
[24] Zhang C Q, Yao K F. Acta Metall Sin, 2006; 42: 870
[24] (张长青, 姚可夫. 金属学报, 2006; 42: 870)
[25] Ma N G, Kui H W. China Mech Eng, 2000; 11: 1298
[25] (马南钢, Kui H W. 中国机械工程, 2000; 11: 1298)
[26] Lee K L, Kui H W. J Mater Res, 1999; 14: 3653
[27] Yuen C W, Lee K L, Kui H W. J Mater Res, 1997; 12: 314
[28] Taillard R, Pineau A, Thomas B J. Mater Sci Eng, 1982; 54: 209
[29] Rothman M F. High-Temperature Property Data: Ferrous Alloys. Metals Park, OH: ASM International, 1987: 250
[30] Teng Z K, Liu C T, Ghosh G, Liaw P K, Fine M E. Intermetallics, 2010; 18: 1437
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[4] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[5] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[6] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[7] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[8] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[9] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[10] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[11] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[13] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[14] 刘建学, 席文君, 李能, 李树杰. 界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金[J]. 金属学报, 2017, 53(8): 1011-1017.
[15] 杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.