Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 855-862    DOI: 10.11900/0412.1961.2019.00355
  本期目录 | 过刊浏览 |
一种单晶高温合金的弹性性能的各向异性
刘金来(), 叶荔华, 周亦胄, 李金国, 孙晓峰
中国科学院金属研究所 沈阳 110016
Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy
LIU Jinlai(), YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1884 KB)   HTML
摘要: 

以一种第一代单晶高温合金为实验材料,利用〈001〉〈100〉和〈011〉〈110〉 (2个指数分别为一次和二次取向) 2种取向的单晶料板,采用敲击共振法测试了从室温到1100 ℃范围内第1种试样的Young's模量和剪切模量及第2种试样的剪切模量,根据测试结果,计算出单晶高温合金的3个弹性常数C11C12C44,从而得到单晶高温合金各个取向的Young's模量和剪切模量。绘制了Young's模量和剪切模量的最大值及最小值的三维取向分布图,分析了弹性模量随晶体取向的变化规律。当一次取向沿着〈001〉和〈111〉时,剪切模量在面内具有各向同性。当一次取向沿着〈011〉时,剪切模量随着二次取向的变化而显著改变,二次取向为〈110〉时具有最小值,二次取向为〈100〉时具有最大值。

关键词 单晶高温合金弹性常数各向异性模量晶体取向    
Abstract

The anisotropy of elasticity of single crystal superalloy is essential to understand its mechanical behavior, e.g. calculating the vibration frequency of turbine blade and avoiding resonance during operation. However, it's difficult to calculate the stiffness constants of single crystal superalloy by theory methods. In this work, one simple experimental method is employed to determine the stiffness constants. The slabs of a first generation single crystal superalloy in two orientations 〈001〉〈100〉 and 〈011〉〈110〉 are employed to measure the Young's modulus and shear modulus of this alloy. The Young's modulus and shear modulus of the first specimen and the shear modulus of the second specimen are measured by resonance method from room temperature to 1100 ℃. The three stiffness constants C11, C12 and C44 of this superalloy are calculated from the measured moduli. The Young's modulus and shear modulus in any orientation can be calculated based on the stiffness constants. Further, the 3D distribution map of Young's modulus and maximum and minimum of shear modulus related to primary orientation can be drawn, so the distribution feature of modulus in 3D space can be acquired conveniently. When the primary orientations are along 〈001〉 and 〈111〉, the shear modulus in plane is isotropy with secondary orientation. When the primary orientation is along 〈011〉, the shear modulus demonstrates significant anisotropy with secondary orientation, the shear modulus reaches minimum with secondary orientation 〈110〉, while the maximum is obtained in secondary orientation 〈100〉.

Key wordssingle crystal superalloy    stiffness constant    anisotropy    modulus    crystal orientation
收稿日期: 2019-10-21     
ZTFLH:  TG113.25  
基金资助:国家科技重大专项项目(2017-VI-0002-0072);国家重点研发计划项目(2017YFA0700704);国家自然科学基金项目(51971214)
通讯作者: 刘金来     E-mail: jlliu@imr.ac.cn
Corresponding author: LIU Jinlai     E-mail: jlliu@imr.ac.cn
作者简介: 刘金来,男,1973年生,副研究员,博士

引用本文:

刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
Jinlai LIU, Lihua YE, Yizhou ZHOU, Jinguo LI, Xiaofeng SUN. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy. Acta Metall Sin, 2020, 56(6): 855-862.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00355      或      https://www.ams.org.cn/CN/Y2020/V56/I6/855

图1  剪切模量与取向关系的示意图
图2  3种取向料板的横截面OM像

Temperature

〈001〉〈100〉〈011〉〈110〉〈011〉〈100〉
E / GPaG / GPaG / GPaG / GPa
20128.0126.048.4118.0
100126.0123.047.2116.0
200122.0120.045.8113.0
300119.0117.044.6110.0
400116.0114.043.4107.0
500112.0111.042.1104.0
600109.0108.040.7101.0
700105.0105.039.098.1
80099.5101.037.194.4
90093.296.834.790.2
100085.592.031.885.3
110076.186.528.479.6
表1  3种取向试样的模量测试结果
Temperature / ℃C11 / GPaC12 / GPaC44 / GPa
20184.687.8126.0
100190.095.6123.0
200182.090.4120.0
300179.089.8117.0
400176.089.2114.0
500166.081.8111.0
600167.185.7108.0
700165.887.8105.0
800153.779.5101.0
900145.275.896.8
1000133.970.392.0
1100117.060.286.5
表2  单晶高温合金的弹性常数计算结果
图3  单晶高温合金在800 ℃的模量三维取向分布图
图4  单晶高温合金800 ℃的剪切模量在不同一次取向的面内变化规律
图5  单晶高温合金〈011〉〈100〉剪切模量的计算值与实测值的对比
图6  合金各向异性因子随温度的变化
图7  一次取向为〈011〉时样品端面的原子排列示意图
[1] Wang L N, Liu Y, Yu J J, et al. Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2009, A505: 144
[2] Vattré A, Devincre B, Roos A. Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discrete-continuous model simulations [J]. Acta Mater., 2010, 58: 1938
doi: 10.1016/j.actamat.2009.11.037
[3] Liu J L, Jin T, Sun X F, et al. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures [J]. Mater. Sci. Eng., 2008, A479: 277
[4] Hou N X, Gou W X, Wen Z X, et al. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade [J]. Mater. Sci. Eng., 2008, A492: 413
[5] Gunturi S S K, MacLachlan D W, Knowles D M. Anisotropic creep in CMSX-4 in orientations distant from 〈001〉 [J]. Mater. Sci. Eng., 2000, A289: 289
[6] Prikhodko S V, Carnes J D, Isaak D G, et al. Elastic constants of a Ni-12.69 at.% Al alloy from 295 to 1300 K [J]. Scr. Mater., 1997, 38: 67
[7] Prikhodko S V, Yang H, Ardell A J, et al. Temperature and composition dependence of the elastic constants of Ni3Al [J]. Metall. Mater. Trans., 1999, 30A: 2403
[8] Siebörger D, Knake H, Glatzel U. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases [J]. Mater. Sci. Eng., 2001, A298: 26
[9] Wolf R J, Mansour K A, Lee M W, et al. Temperature dependence of elastic constants of embedded-atom models of palladium [J]. Phys. Rev., 1992, 46B: 8027
[10] Cheng D Y, Wang S Q, Ye H Q. First-principles calculations of the elastic properties of ZrC and ZrN [J]. J. Alloys Compd., 2004, 377: 221
[11] Wang S Q, Ye H Q. First-principles study on elastic properties and phase stability of III-V compounds [J]. Phys. Stat. Sol., 2003, 240B: 45
[12] Wen M, Barnoush A, Yokogawa K. Calculation of all cubic single-crystal elastic constants from single atomistic simulation: Hydrogen effect and elastic constants of nickel [J]. Comput. Phys. Commun., 2011, 182: 1621
[13] Jamal M, Asadabadi S J, Ahmad I, et al. Elastic constants of cubic crystals [J]. Comput. Mater. Sci., 2014, 95: 592
[14] Duan L J, Liu Y C. Relationships between elastic constants and EAM/FS potential functions for cubic crystals [J]. Acta Metall. Sin., 2020, 56: 112
[14] 段灵杰, 刘永长. 立方晶体弹性常数和EAM/FS势函数的关系 [J]. 金属学报, 2020, 56: 112
[15] Huang X Y, Hu B R, Chen X W, et al. Mechanical Behavior of Aeronautical Materials [M]. Beijing: National Defense Industry Press, 2012: 118
[15] 黄新跃, 胡本润, 陈新文等. 航空材料的力学行为 [M]. 北京: 国防工业出版社, 2012: 118
[16] Aba-Perea P E, Pirling T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys [J]. Mater. Des., 2016, 89: 856
[17] Ma S, Brown D, Bourke M A M, et al. Microstrain evolution during creep of a high volume fraction superalloy [J]. Mater. Sci. Eng., 2005, A399: 141
[18] Crimp M A. HREM examination of [101] screw dislocations in Ni3Al [J]. Philos. Mag. Lett., 1989, 60: 45
[19] Ting T C T. On anisotropic elastic materials for which Young's modulus E(n) is independent of n or the shear modulus G(n, m) is independent of n and m [J]. J. Elasticity, 2005, 81: 271
[20] Knowles K M, Howie P R. The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials [J]. J. Elasticity, 2015, 120: 87
[21] Wallow F, Neite G, Schröer W, et al. Stiffness constants, dislocation line energies, and tensions of Ni3Al and of the γ'-phases of NIMONIC 105 and of NIMONIC PE16 [J]. Phys. Status Solidi, 1987, 99A: 483
[22] Dye D, Coakley J, Vorontsov V A, et al. Elastic moduli and load partitioning in a single-crystal nickel superalloy [J]. Scr. Mater., 2009, 61: 109
[23] Prikhodko S V, Ma Y, Ardell A J, et al. Elastic constants of face-centered cubic and L12 Ni-Si alloys: Composition and temperature dependence [J]. Metall. Mater. Trans., 2003, 34A: 1863
[24] Xing L L, Yang H, Zhang G, et al. Temperature and pressure dependence of elastic moduli of MgO and Cu [J]. J. Atom. Mol. Phys., 2017, 34: 547
[24] 邢玲玲, 杨 欢, 张 刚等. MgO和Cu的弹性常数随温度及压强变化关系的研究 [J]. 原子与分子物理学报, 2017, 34: 547
[25] Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[3] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[4] 段灵杰,刘永长. 立方晶体弹性常数和EAM/FS势函数的关系[J]. 金属学报, 2020, 56(1): 112-118.
[5] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[6] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[7] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[8] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[9] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[10] 王莉,何禹锋,申健,郑伟,楼琅洪,张健. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究[J]. 金属学报, 2019, 55(11): 1417-1426.
[11] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[12] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[13] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[14] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[15] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.