Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1367-1376    DOI: 10.11900/0412.1961.2014.00207
  论文 本期目录 | 过刊浏览 |
柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为
莫永达1, 姜雁斌1,2, 刘新华1,2, 谢建新1,2
1 北京科技大学材料先进制备技术教育部重点实验室, 北京 100083; 2 北京科技大学现代交通金属材料与加工技术北京实验室, 北京 100083
MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF COLUMNAR-GRAINED HAl77-2 BRASS
MO Yongda1, JIANG Yanbin1,2, LIU Xinhua1,2, XIE Jianxin1,2
1 Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083; 2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science; and Technology Beijing, Beijing 100083
全文: PDF(10012 KB)   HTML
摘要: 利用室温单向拉伸实验、EBSD和TEM等手段, 研究了柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为, 探讨了晶粒尺寸对拉伸变形加工硬化速率和塑性变形能力的影响及其机制. 结果表明, 柱状晶组织HAl77-2铝黄铜加工硬化速率-真应变关系曲线第2阶段具有显著上升趋势, 晶内形成平行分布的小角度亚晶界使位错滑移长度减小并阻碍位错运动是加工硬化速率上升的主要原因, 不同于文献报道的等轴晶组织黄铜加工硬化第2阶段形成形变孪晶使滑移长度减小的机制. 随着晶粒尺寸的增大, 柱状晶组织HAl77-2铝黄铜的屈服强度和抗拉强度降低, 而断后伸长率显著增大, 由晶粒尺寸为2.0 mm的70.4%增大到晶粒尺寸为6.0 mm的84.4%. 较高的抗塑性失稳能力和较好的晶内变形均匀性是大晶粒柱状晶试样具有更优塑性变形能力的主要原因.
关键词 HAl77-2铝黄铜柱状晶组织力学性能加工硬化速率晶粒尺寸    
Abstract:The mechanical properties and work hardening behavior of columnar-grained HAl77-2 brass were investigated by means of room temperature tensile test, EBSD and TEM. The effects of grain size on the work hardening rate and tensile ductility of the alloy were discussed. Some references reported that deformation twinning developed in the equiaxed-grained brass led to a reduction in slip length of dislocation and an increase in the work hardening rate at the second stage in the curve of work-hardening vs strain. In this work, however, the results showed that the low-angle subgrain boundaries distributed parallelly were formed in the columnar grain and reduced the slip length of dislocation at the second stage, which was responsible for the rise of the work hardening rate. With increasing grain size, both the yield strength and ultimate tensile strength of the columnar-grained HAl77-2 brass decreased, but its elongation to failure increased significantly from 70.4% for the grain size of 2.0 mm to 84.4% for the grain size of 6.0 mm. Higher performance to resist the plastic instability and better deformation uniformity mainly contributed to the ductility improvement of the larger-grain-sized columnar-grained HAl77-2 brass.
Key wordsHAl77-2 brass    columnar grain    mechanical property    work hardening rate    grain size
收稿日期: 2014-08-02     
ZTFLH:  TG146.1  
基金资助:*国家科技支撑计划项目2011BAE23B00和国家自然科学基金项目51104016 资助
Corresponding author: Correspondent: XIE Jianxin, professor, Tel: (010)62332254, E-mail:jxxie@mater.ustb.edu.cn   
作者简介: 莫永达, 男, 1987年生, 博士生

引用本文:

莫永达, 姜雁斌, 刘新华, 谢建新. 柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为[J]. 金属学报, 2014, 50(11): 1367-1376.
MO Yongda, JIANG Yanbin, LIU Xinhua, XIE Jianxin. MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF COLUMNAR-GRAINED HAl77-2 BRASS. Acta Metall Sin, 2014, 50(11): 1367-1376.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00207      或      https://www.ams.org.cn/CN/Y2014/V50/I11/1367

[1] Kazdal Zeytin H. Mater Charact, 2008; 59: 167
[2] Pola A, Gelfi M, Eleonora Depero L, Roberti R. Eng Fail Anal, 2008; 15: 54
[3] Trostmann A, Morin O. Desalin Water Treat, 2010; 22: 299
[4] Mei J, Liu X H, Jiang Y B, Chen S, Xie J X. Int J Min Met Mater, 2013; 20: 748
[5] Huang H Y, Wang Y, Xie J X. Mater Sci Eng, 2014; A596: 103
[6] Wang Y, Huang H Y, Xie J X. Mater Sci Eng, 2011; A530: 418
[7] Xie J X, Wang Y, Huang H Y. Chin J Nonferrous Met, 2011; 21: 2324 (谢建新, 王 宇, 黄海友.中国有色金属学报, 2011; 21: 2324)
[8] Gan C L, Liu X F, Huang H Y, Xie J X. Mater Sci Eng, 2013; A579: 202
[9] Xie J X, Liu X H, Liu X F, Mei J. Chin Pat, 201110210692.9, 2011 (谢建新, 刘新华, 刘雪峰, 梅 俊. 中国专利, 201110210692.9, 2011)
[10] Xiao G H, Tao N R, Lu K. Scr Mater, 2011; 65: 119
[11] Zhang P, An X H, Zhang Z J, Wu S D, Li S X, Zhang Z F, Figueiredo R B, Gao N, Langdonet T G. Scr Mater, 2012; 67: 871
[12] Thompson A W, Baskes M I, Flanagan W F. Acta Mater, 1973; 21: 1017
[13] Hong S I, Laird C. Acta Metall Mater, 1990; 38: 1581
[14] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[15] El-Danaf E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1999; 30A: 1223
[16] Dong H, Thompson A W. Metall Trans, 1985; 16A: 1025
[17] Kocks U F, Mecking H. Prog Mater Sci, 2003; 48: 171
[18] Asgari S, El-Danaf E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1997; 28A: 1781
[19] Sakharova N A, Fernandes J V, Vieira M F. Mater Sci Eng, 2009; A507: 13
[20] Engler O, Randle V. Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping. 2nd Ed, New York: CRC press, 2009: 392
[21] Dieter G E, Bacon D. Mechanical Metallurgy. 3rd Ed, New York: McGraw-Hill, 1986: 289
[22] Duggan B J, Hatherly M, Hutchinson W B, Wakefield P T. Metall Sci, 1978; 12: 343
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.