Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 77-83    
  论文 本期目录 | 过刊浏览 |
一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析
刘刚1); 刘林1); 赵新宝1); 张卫国1); 金涛2); 张军1); 傅恒志1)
1) 西北工业大学凝固技术国家重点实验室; 西安 710072
2) 中国科学院金属研究所; 沈阳 110016
MICROSTRUCTURE AND MICROSEGREGATION IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY DIRECTIONALLY SOLIDIFIED UNDER HIGH THERMAL GRADIENT
LIU Gang1); LIU Lin1); ZHAO Xinbao1); ZHANG Weiguo1); JIN Tao2); ZHANG Jun1); FU Hengzhi1)
1) State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 2) Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

刘刚 刘林 赵新宝 张卫国 金涛 张军 傅恒志. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报, 2010, 46(1): 77-83.
, , , , , . MICROSTRUCTURE AND MICROSEGREGATION IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY DIRECTIONALLY SOLIDIFIED UNDER HIGH THERMAL GRADIENT[J]. Acta Metall Sin, 2010, 46(1): 77-83.

全文: PDF(1084 KB)  
摘要: 

采用双区加热和液态金属冷却法 (LMC) 相结合, 对一种含4%Re (质量分数) 的镍基单晶高温合金进行了高温度梯度定向凝固. 结果表明: 与传统的“ 高速凝固法 (HRS) ” (温度梯度G=20-40 K/cm, 抽拉速率V=50-100 μm/s, 一次枝晶间距 λ1=200-400 μm)相比, 该技术可以显著提高凝固界面前沿的温度梯度 (G=238 K/cm) 和抽拉速率 (V=500 μm/s). 随着抽拉速率的提高, 凝固界面形态呈现出平面、胞状、粗大枝晶和细枝晶形态, 一次枝晶间距不断减小, 通过固态相变析出的γ' 强化相也被显著细化, 当G=238 K/cm, V=500 μm/s时, λ1和枝晶干γ' 相平均尺寸分别减小到61.3和0.04 μm. 电子探针测定表明, 随着抽拉速率的提高, 枝晶偏析呈现先增大后减小的趋势. 这是高温度梯度条件下, 固相反扩散作用强烈影响元素在枝晶中分布的结果.

关键词 镍基单晶高温合金高温度梯度 枝晶偏析微观组织    
Abstract

In order to understand the effect of high thermal gradient on the microsegregation of refractory elements in Ni-based superalloys, a Ni-based single crystal superalloy containing 4% Re (mass fraction) was prepared by dual heating zone melting and liquid-metal cooling (LMC) directional solidification technique. Comparing with the traditional high rate solidification (HRS) method with thermal gradient G=20-40 K/cm, withdrawal rate V=50-100 $\mu$m/s and primary dendritic arm spacing λ1=200-400 μm, this technique can significantly increase the thermal gradient (up to 238 K/cm) and withdrawal rates (up to 500 $\mu$m/s). Planar-like and cellular-like solid-liquid interfaces, coarse dendrite and fine dendrite were sequentially obtained with increasing withdrawal rates. Under the condition of $G$=238 K/cm and $V$=500 $\mu$m/s, the primary dendritic arm spacing λ1 and the mean size of γ' precipitates (in dendrite core) obviously decreased to 61.3 and 0.04 μm, respectively. In addition, the microsegregation increased initially and then decreased with increasing withdrawal rate, especially for the microsegregations of W and Re. EPMA line scan indicated that solid-back diffusion has an obvious influence on the microsegregation for the fine dendrite structure under high thermal gradient directional solidification.

Key wordsNi-based single crystal superalloy    high thermal gradient    microsegregation    microstructure
收稿日期: 2009-06-23     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金项目 50771081和50827102以及国家高技术研究发展计划项目2007AA03Z552资助

作者简介: 刘刚, 男, 1983年生, 博士生

[1] Tin S, Pollock T M. J Propul Power, 2006; 22: 361
[2] Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 157
[3] Zhang J. J Mater Sci Technol, 2007; 23: 289
[4] Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081
[5] Wilson B C, Cutler E R, Fuchs G E. Mater Sci Eng, 2008; A479: 356
[6] Fritzmeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C, eds., Superalloys 1988, Warrendale: TMS, 1988: 265
[7] Elliott A J, Karney G B, Gigliotti M F X, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 421
[8] Elliott A J, Pollcok T M. Metall Mater Trans, 2007; 38A: 871
[9] Li D Z, Su S F, Wang J Q, An G Y, Xu D M. Foundry, 1998; 06: 13
[10] Seo S M, Lee J H, Yoo Y S, Jo C Y, Miyahara H, Ogi K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Warrendale: TMS, 2008: 277
[11] Hobbs R A, Tin S, Rae C M F. Metall Mater Trans, 2005; 36A: 2761
[12] Caldwell E C, Fela F J, Fuchs G E. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 811
[13] Hu H Q. Solidification Principle of Metals. Beijing: China Machine Press, 2000: 130
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 130)

[14] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publication Ltd, 1998: 123
[15] Thirumalai A, Akhtar A, Reed R C. Mater Sci Technol, 2006; 22: 1
[16] D’Souza N, Ardakani M G, McLean M, Shollock B A. Metall Mater Trans, 2000; 31A: 2877
[17] Li L. PhD Thesis, Aubrun University, Alabama, 2002
[18] Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[19] Zhang W G, Liu L, Huang T W, Zhao X B, Yu Z H, Fu H Z. Acta Metall Sin, 2009; 45: 592
(张卫国, 刘林, 黄太文, 赵新宝, 余竹焕, 傅恒志. 金属学报, 2009; 45: 592)

[20] Karunaratne M S A, Carter P, Reed R C. Mater Sci Eng, 2000; A281: 229
[21] Hobbs R A, Tin S, Rae C M F, Broomfield R W, Humphreys C J. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 819

[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.