Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 84-90    
  论文 本期目录 | 过刊浏览 |
NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟
柯常波 马骁 张新平
华南理工大学材料科学与工程学院; 广州 510640
PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY
KE Changbo; MA Xiao; ZHANG Xinping
School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640
引用本文:

柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
, . PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. Acta Metall Sin, 2010, 46(1): 84-90.

全文: PDF(1038 KB)  
摘要: 

采用基于扩散场理论的宏观相场模型对NiTi形状记忆合金中具有菱方结构的共格Ni4Ti3相的析出及长大过程进行了模拟研究; 沉淀相的形貌演化通过求解非守恒参量场Ginzburg-Landau控制方程和守恒浓度场Cahn-Hilliard扩散方程获得. 与二维模型相比, 本研究采用了准确的晶体学参数及改进的数学模型, 获得了更为直观及合理的三维盘状变体及二维透镜状变体; Ni4Ti3沉淀相的长度、宽度和面积分数随时间的变化分别遵循指数、线性和对数关系; 且其长度与宽度的比值并非恒定值, 在生长初期该比值有较大的增速而随后逐渐减慢, 能很好地解释沉淀相盘状及透镜状形貌特征形成的原因并与相关实验结果吻合.

关键词 NiTi形状记忆合金共格沉淀相生长动力学相场法形貌演化    
Abstract

The precipitation of metastable Ni4Ti3 particles and their distribution feature in Ni-rich NiTi shape memory alloys have significant influence on the subsequent martensitic transformation behavior and shape memory effect as well as superelasticity. The Ni4Ti3 particles with the space group R3 precipitate coherently along four {111} planes of the B2 matrix and form four pairs of conjugate variants. The diffusion-interface phase field model was used to simulate the nucleation and growth of the Ni4Ti3 precipitate in NiTi shape memory alloy, and its morphological evolution was characterized by solving Ginzburg-Landau equation for non-conserved field variables and Cahn-Hilliard diffusion equation for conserved field variables. More accurate crystallographic parameters and improved mathematical model were used in simulating the formations of 3D plate-shaped or 2D lenticular-shaped Ni4Ti3 variants. The time dependences of length, width and area fraction of Ni4Ti3 precipitate obey a power law, a linear and a logarithmic equation, respectively. The length-to-width ratio of the precipitate is not a constant value, but increases rapidly in the early stage of precipitation and slows down in later stage, which is corresponding to the plate- or lenticular-shaped morphologies and coincident with the experimental observations reported.

Key wordsNiTi shape memory alloy    coherent precipitate    growth kinetics    phase field method    morphology evolution
收稿日期: 2009-06-11     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金项目50671037和50871039以及国家建设高水平大学公派研究生项目2008615024资助

作者简介: 柯常波, 男, 1981年生, 博士生

[1] Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511
[2] Li B Y, Rong L J, Li Y Y, Gjunter V E. Acta Mater, 2000; 48: 3895
[3] Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020
[4] Fan G, Chen W, Yang S, Zhu J, Ren X, Otsuka K. Acta Mater, 2004; 52: 4351
[5] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525
[6] Michutta J, Carroll M C, Yawny A, Somsen C, Neuking K, Eggeler G. Mater Sci Eng, 2004; A378: 152
[7] Bojda O, Eggeler G, Dlougy A. Scr Mater, 2005; 53: 99
[8] Tirry W, Schryvers D. Acta Mater, 2005; 53: 1041
[9] Schryvers D, Tirry W, Yang Z Q. Mater Sci Eng, 2006; A438–440: 485
[10] Kroger A, Dziaszyk S, Frenzel J, Somsen C, Dlouhy A, Eggeler G. Mater Sci Eng, 2008; A481–482: 452
[11] Holec D, Bojda O, Dlouhy A. Mater Sci Eng, 2008; A481–482: 462
[12] Allafi J K, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255
[13] Rajab K E, Doherty R D. Acta Metall, 1989; 37: 2709
[14] Prabhu N, Howe J M. Metall Mater Trans, 1992; 23A: 135
[15] Sueoka K, Ikeda N, Yamamoto T, Kobayashi S. J Appl Phys, 1993; 74: 5437
[16] Moore K T, Howe J M. Acta Mater, 2000; 48: 4083
[17] Li D Y, Chen L Q. Acta Metall, 1996; 45: 2435
[18] Li D Y, Chen L Q. Acta Metall, 1996; 45: 471
[19] Li D Y, Chen L Q. Acta Metall, 1997; 46: 639
[20] Li D Y. Philos Mag, 1999; 79A: 2603
[21] Chen L Q. Annu Rev Res, 2002; 32: 113
[22] Wang Y, Li J. Acta Mater, 2009; doi: 10.1016/j.actamat. 2009.10.041
[23] Khachaturyan A G. Theory of Structural Transformation in Solids. New York: Wiley–Interscience, 1983: 213
[24] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232
[25] Wagner M F, Windl W. Scr Mater, 2009; 60: 207
[26] Sharma S K, Macht M P, Naundorf V. Phys Rev, 1994; 49B: 6655
[27] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009; 57: 316
[28] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023
[29] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029
[30] Wang Y, Banerjee D, Su C C, Khachaturyan A G. Acta Mater, 1998; 46: 2983
[31] Shen C, Simmons J P, Wang Y. Acta Mater, 2007; 55: 1457
[32] Bosze W P, Trivedi R. Metall Trans, 1974; 5: 511
[33] Enomoto M, Aaronson H I. Scr Mater, 1989; 23: 55
[34] Atkinson C. J Appl Phys, 1982; 53: 5689

[1] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[5] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[6] 张军,陈文雄,郑成武,李殿中. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53(6): 760-768.
[7] 张军,郑成武,李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*[J]. 金属学报, 2016, 52(11): 1449-1458.
[8] 武慧东,张弛,柳文波,杨志刚. 考虑位错相互作用的混合控制模型下先共析铁素体生长动力学模拟[J]. 金属学报, 2015, 51(9): 1136-1144.
[9] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[10] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[11] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[12] 周敏波,马骁,张新平. BGA结构Sn-3.0Ag-0.5Cu/Cu焊点低温回流时界面反应和IMC生长行为[J]. 金属学报, 2013, 49(3): 341-350.
[13] 柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
[14] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[15] 江鸿杰 柯常波 曹姗姗 马骁 张新平. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47(9): 1105-1111.