Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1232-1236    
  论文 本期目录 | 过刊浏览 |
单晶高温合金DD6再结晶晶界析出相特征及其形成机制
熊继春1; 李嘉荣1; 赵金乾1; 刘世忠1; 董建新2
1.北京航空材料研究院先进高温结构材料国防科技重点实验室; 北京100095
2.北京科技大学高温合金研究室; 北京 100083
CHARACTERISTIC AND FORMATION MECHANISM OF PRECIPITATES AT RECRYSTALLIZATION GRAIN BOUNDARIES OF SINGLE CRYSTAL
SUPERALLOY DD6
XIONG Jichun1; LI Jiarong1; ZHAO Jinqian1; LIU Shizhong1; DONG Jianxin2
1. National Key Laboratory of Advanced High Temperature Structural Materials; Beijing Institute of Aeronautical Materials; Beijing 100095
2. High Temperature Materials Research Laboratory; University of Science & Technology Beijing; Beijing 100083
引用本文:

熊继春 李嘉荣 赵金乾 刘世忠 董建新. 单晶高温合金DD6再结晶晶界析出相特征及其形成机制[J]. 金属学报, 2009, 45(10): 1232-1236.
. CHARACTERISTIC AND FORMATION MECHANISM OF PRECIPITATES AT RECRYSTALLIZATION GRAIN BOUNDARIES OF SINGLE CRYSTAL
SUPERALLOY DD6[J]. Acta Metall Sin, 2009, 45(10): 1232-1236.

全文: PDF(3171 KB)  
摘要: 

对单晶高温合金DD6进行表面吹砂处理, 然后进行固溶与时效真空热处理, 采用SEM, TEM, EPMA和Thermo-Calc的方法研究了单晶合金DD6再结晶晶界析出相的特征及其形成机制. 结果表明, 经过吹砂处理的DD6合金在固溶与时效热处理过程中发生再结晶. 再结晶晶界出现析出相, 分析表明析出相为M6C碳化物, 该碳化物呈粒状析出, 尺寸约为0.5 μm, 数量极少, 富含W, Re和 Mo, 且Cr, Nb和Co的含量与合金名义成分差别不大, 而Al, Ta和Ni含量较低. 由于再结晶晶界上C元素的聚集效应, C原子在晶界上达到一定浓度后即与一定数量的W, Mo等μ相形成元素发生相变反应, 抑制了合金析出μ相的倾向. 又因为DD6合金W含量较高, 而Cr含量较低, 抑制了M23C6碳化物, 有利于析出M6C碳化物.

关键词 单晶高温合金 DD6 再结晶 析出相    
Abstract

Single crystal superalloys have extremely good elevated temperature capability in advanced gas turbine aero engines due to no highly stressed grain boundaries in them. With the removal of grain boundary strengthening elements such as C, B and Zr, the occurrence of recrystallization may be detrimental to their performance. Therefore, recrystallization becomes critical in industrial manufacture of single crystal superalloy blades. In the present study, specimens of single crystal superalloy DD6 were grit blasted, solution treated and aged at vacuum atmosphere, and then the
precipiaes at recrystallization grain boundaries were invstigated by SE, TE, EPMA and Themo–Calc. The results show that a few of M6C carbides preciptate at recrystallization grain boundaries, and their size is about 0.5 μm. These M6C carbides are rch in W, Re and Mo, but poor in A, Ta, Ni,
the contents of Cr, Nb, Co in them are almost the same as the nominal composition of DD6 alloy. The carbon accumulation arecrystallization boundaries and combination with μ phase forming elements such as W and Mo restrain the μ phase forming. M23C6 phase hardly forms in DD6 alloy due to its high W and low Cr content.

Key wordssingle crystal superalloy    DD6    recrystallization    precipitate
收稿日期: 2009-04-02     
ZTFLH: 

TG132.3+2

 
作者简介: 熊继春, 男, 1981年生, 博士生

[1] Gell M, Duhl D N, Giamei A F. In: Tien J K, Gell M, Maurer G, Wlodek S T eds., Superalloys 1980, Seven Springs, PA: TMS, 1980: 205
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superaloys 1996, Seven Springs, PA: TMS, 1996: 35
[4] Seth B B. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 3
[5] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D, Han M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Spring, PA: TMS, 2000: 777
[6] Chen R Z. J Aviat Eng Maint, 1990; (4): 22
(陈荣章. 航空制造工程, 1990; (4): 22)
[7] Wei P, Li J R, Zhong Z G. J Mater Eng, 2001; (10): 5
(卫平, 李嘉荣, 钟振纲. 材料工程, 2001; (10): 5)
[8] Cox D C, Roebuck B, Rae C M F, Reed R C. Mater Sci Technol, 2003; 19: 440
[9] Li Y N, He D, Li S S, Han Y F. Acta Metall Sin, 2008; 44: 391
(李亚楠, 何迪, 李树索, 韩雅芳. 金属学报, 2008; 44: 391)
[10] Wang Z G, Zhao J C, Yan P, Zhou T T, Liu P Y. J Iron Steel Res, 2009; 21(2): 23
(王志刚, 赵京晨, 燕平, 周铁涛, 刘培英. 钢铁研究学报, 2009; 21(2): 23)
[11] Xiong J C, Li J R, Liu S Z, Han M. J Mater Eng, 2009; (Suppl.1): 110
(熊继春, 李嘉荣, 刘世忠, 韩 梅. 材料工程, 2009; (增刊1): 110)
[12] Burgel R, Portella P D, Preuhs J. in: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 229
[13] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[14] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[15] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1665
[16] Wang D L, Jin T, Yang S Q, Wei Z, Li J B, Hu Z Q. Mater Sci Forum, 2007; 546–549: 1229
[17] Xie G, Wang L, Zhang J, Lou L H. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Seven Spring, PA: TMS, 2008: 453
[18] Li J R, Zhao J Q, Liu S Z, Han M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Seven Spring, PA: TMS, 2008: 443
[19] Zheng Y R, Zhang D T. Color Metallographic Investigation of Superalloys and Steels. Beijing: National Defense Industry Press, 1999: 198
(郑运荣, 张德堂. 高温合金与钢的彩色金相研究. 北京: 国防工业出版社, 1999: 198)
[20] Cai Y L, Zheng Y R. Color Metallographic Investigation of Superalloys. Beijing: National Defense Industry Press, 1986: 150
(蔡玉林, 郑运荣. 高温合金的金相研究. 北京: 国防工业出版社, 1986: 150)
[21] Yu Y N. Principles of Metallographical. Beijing: Metallurgical Industry Press, 2005: 362
(余永宁. 金属学原理. 北京: 冶金工业出版社, 2005: 362)
[22] Pan J S, Tong J M, Tian M B. Material Science. Beijing: Tsinghua University Press, 1998: 420
(潘金生, 仝建民, 田民波. 材料科学基础. 北京: 清华大学出版社, 1998: 420)

[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[8] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[9] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[10] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[11] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[14] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[15] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.