Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1237-1241    
  论文 本期目录 | 过刊浏览 |
相场法模拟动力学各向异性对过冷熔体中晶体生长的影响
赵达文;李金富
上海交通大学材料科学与工程学院金属基复合材料国家重点实验室; 上海 200240
PHASE–FIELD SIMULATION OF THE EFFECT OF KINETIC ANISOTROPY ON CRYSTAL GROWTH IN UNDERCOOLED MELTS
ZHAO Dawen; LI Jinfu
State Key Laboratory of Metal Matrix Composites; School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240
引用本文:

赵达文 李金富. 相场法模拟动力学各向异性对过冷熔体中晶体生长的影响[J]. 金属学报, 2009, 45(10): 1237-1241.
, . PHASE–FIELD SIMULATION OF THE EFFECT OF KINETIC ANISOTROPY ON CRYSTAL GROWTH IN UNDERCOOLED MELTS[J]. Acta Metall Sin, 2009, 45(10): 1237-1241.

全文: PDF(1300 KB)  
摘要: 

采用相场模型定量模拟了动力学各向异性作用下过冷熔体中的晶体生长过程. 模拟结果表明, 仅存在动力学各向异性时, 各向异性系数大小对生长方式选择起着决定性作用. 当各向异性较低时, 固相以分形方式生长, 在生长过程中不存在占优势的生长方向, 同时也不存在稳态生长状态; 而当各向异性系数大于0.02时, 固相以枝晶方式沿<110>方向生长. 进一步研究表明, 枝晶生长稳定性系数随各向异性值的增加而增加, 而与动力学系数取值无关.

关键词 动力学各向异性 分形生长 枝晶生长 相场模型 自适应有限元法    
Abstract

Solidification is generally determined by a complex interplay of heat and/or solute diffusion processes, capillary and/or kinetic effects of the solid/liquid interface. Theoretical analysis indicates that the crystal growth morphology and behavior both depend sensitively on the degree of the capillary and kinetic anisotropy. In present, the influences of capillary anisotropy on crystal growth process have been extensively studied, especially simulated by the phase–field model. Unfortunately, the influences of kinetic anisotropy on the crystal growth morphology and behavior are seldom researched. In this paper, the phase–field model was employed to quantitatively simulate the effects of kinetic anisotropy on the crystal growth in undercooled melts. It is illustrated that the selection of the solid/liquid interface morphology is determined by the kinetic anisotropic parameter if the capillary anisotropy s set as zero. With a wak kinetc anisotropy, the melt solidifies in a fractal pattern, during which there s no obvious preferrd growth drection, and any steady–state gowth cannot be detected. As a stong anisotropy becomes greater than 0.02, the interface morphology changes to a dendritic pattern growth along the h110i orientation. Further analysis indicates that the stability parameter ncreases inearly with the increase of inetic anisotropic parameter and is independent of the kinetic coefficient.

Key wordskinetic anisotropy    fractal growth    dendrite growth    phase--field model    adaptive finite element method
收稿日期: 2009-02-24     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金资助项目50571068

作者简介: 赵达文, 男, 1973年生, 博士

[1] Langer J S. Directions in Condense Matter. Singapore: World Scientific, 1986: 164
[2] Caginalp G, Fife P. Phys Rev, 1986; 34B: 4940
[3] Karma A, Rappel W J. hys Rev, 1998; 57E: 4323
[4] Karma A, Lee Y H, Plapp M. Phys Rev, 2000; 61E: 3996
[5] Haxhimali T, Karma A, Gonzales F. Nat Mater, 2006; 5: 660
[6] Boettinger W J, Warren J A, Beckermann C. Annu Rev Mater Res, 2002; 32: 163
[7] Li J J, Wang J C, Yang G C. Acta Mater, 2007; 55: 825
[8] Li J J, Wang J C, Yang G C. Acta Phys Sin, 2007; 56: 1514
(李俊杰, 王锦程, 杨根仓. 物理学报, 2007; 56: 1514)
[9] Li J J, Wang J C, Yang G C. J Cryst Growth, 2007; 309: 65
[10] Zhu Y C, Wang J C, Yang G C, Yang Y J. Acta Phys Sin, 2007; 56: 5542
(朱耀产, 王锦程, 杨根仓, 杨玉娟. 物理学报, 2007; 56: 5542)
[11] Zhang R J, Jing T, Liu B C. Acta Mater, 2006; 54: 2235
[12] Cui H B, Guo J J, Su Y Q, Wu S P. Acta Metall Sin, 2007; 43: 907
(崔红保, 郭景杰, 苏彦庆, 吴士平. 金属学报, 2007; 43: 907)
[13] Langer J S. Phys Rev, 1986; 33A: 435
[14] Kessler D A, Levine H. Phys Rev, 1986; 33B: 7867
[15] Amar M B, Pomeau Y. Euro Phys Lett, 1986; 2: 307
[16] Brener E A. Adv Phys, 1991; 40: 53
[17] Zienkiewicz O C, Zhu J Z. Int J Numer Meth Eng, 1987; 24: 337
[18] Zhao D W, Yang G C, Wang J C, Zhu Y C. Prog Nat Sci, 2006; 16: 1009
(赵达文, 杨根仓, 王锦程, 朱耀产. 自然科学进展, 2006; 16: 1009)
[19] Ihle T, Muller–Krumbhaar H. Phys Rev, 1994; 49E: 2972
[20] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323
[21] Mullins W W, Sekerka R F. J Appl Phys, 1964; 35: 444
[22] Langer J S. Rev Mod Phys, 1980; 52: 1

[1] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[2] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[3] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[4] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[5] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[6] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
[7] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[8] 高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高. 晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*[J]. 金属学报, 2014, 50(7): 886-896.
[9] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.
[10] 张航, 许庆彦, 史振学, 柳百成. DD6高温合金定向凝固枝晶生长的数值模拟研究*[J]. 金属学报, 2014, 50(3): 345-354.
[11] 高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 晶界位错运动与位错反应过程的晶体相场模拟*[J]. 金属学报, 2014, 50(1): 110-120.
[12] 吴艳,宗亚平,张宪刚. 纳米晶AZ31镁合金显微组织演变的相场法模拟研究[J]. 金属学报, 2013, 49(7): 789-796.
[13] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[14] 张显飞,赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48(5): 615-620.
[15] 刘明治 张瑞杰 方伟 章书周 曲选辉. 相场法模拟两相多孔组织烧结[J]. 金属学报, 2012, 48(10): 1207-1214.