|
|
Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究 |
宋元元, 赵明久, 戎利建( ) |
中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Study on the Precipitation of γ' in a Fe-Ni Base Alloy During Ageing by APT |
Yuanyuan SONG, Mingjiu ZHAO, Lijian RONG( ) |
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institue of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
Yuanyuan SONG,
Mingjiu ZHAO,
Lijian RONG.
Study on the Precipitation of γ' in a Fe-Ni Base Alloy During Ageing by APT[J]. Acta Metall Sin, 2018, 54(9): 1236-1244.
[1] | Brooks J A, Thompson A W.Microstructure and hydrogen effects on fracture in the alloy A-286[J]. Metall. Trans., 1993, 24A: 1983 | [2] | Li X Y, Li Y Y.The Hydrogen Damage of Austenite Alloys [M]. Beijing: Science Press, 2003: 1(李秀艳, 李依依. 奥氏体合金的氢损伤 [M]. 北京: 科学出版社, 2003: 1) | [3] | De Cicco H, Luppo M I, Gribaudo L M, et al.Microstructural development and creep behavior in A286 superalloy[J]. Mater. Character., 2004, 52: 85 | [4] | Ma L M, Liang G J, Fan C G, et al.Effect of microstructure on hydrogen damage of JBK-75 precipitate-strengthened austenitic steel[J]. Acta. Metall. Sin.(Engl. Lett.), 1997, 10: 206 | [5] | Guo J T.Materials Science and Engineering for Superalloys (Volume one)—Application of basic theory [M]. Beijing: Science Press, 2008: 300(郭建亭. 高温合金材料学(上册)-应用基础理论 [M]. 北京: 科学出版社, 2008: 300) | [6] | Rho B S, Nam S W.Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue[J]. Mater. Sci. Eng., 2000, A291: 54 | [7] | Li X Y, Zhang J, Rong L J, et al.Cellular η phase precipitation and its effect on the tensile properties in an Fe-Ni-Cr alloy[J]. Mater. Sci. Eng., 2008, A488: 547 | [8] | Chen S H, Zhao M J, Rong L J.Role of γ' characteristic on the hydrogen embrittlement susceptibility of Fe-Ni-Cr alloys[J]. Corros. Sci., 2015, 101: 75 | [9] | Birnbaum H K, Sofronis P.Hydrogen-enchanced localized plasticity—A mechanism for hydrogen-related fracture[J]. Mater. Sci. Eng., 1994, A196: 191 | [10] | Guo Z F, Zhao M J, Li C F, et al.Mechanism of hydrogen embrittlement in a gamma-prime phase strengthened Fe-Ni based austenitic alloy[J]. Mater. Sci. Eng., 2012, A555: 77 | [11] | Li Z W, Zhao M J, Rong L J.Study on behaviors of hydrogen-induced fracture of precipitation strengthened austenitic alloy[J]. Chin. J. Mater. Res., 2012, 26: 113(李忠文, 赵明久, 戎利建. 沉淀强化奥氏体合金的氢致断裂行为[J]. 材料研究学报, 2012, 26: 113) | [12] | Chen S H, Zhao M J, Rong L J.Hydrogen-induced cracking behavior of twin boundary in γ′ phase strengthened Fe-Ni based austenitic alloys[J]. Mater. Sci. Eng., 2013, A561: 7 | [13] | Zhou B X, Liu W Q.The application of 3DAP in the study of materials science[J]. Mater. Sci. Tech., 2007, 15: 405(周邦新, 刘文庆. 三维原子探针及其在材料科学研究中的应用[J]. 材料科学与工艺, 2007, 15: 405) | [14] | Marquis E A, Bachhav M, Chen Y M, et al.On the current role of atom probe tomography in materials characterization and materials science[J]. Curr. Opin. Solid State Mater. Sci., 2013, 17: 217 | [15] | Kapoor M, Isheim D, Ghosh G, et al.Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel[J]. Acta Mater., 2014, 73: 56 | [16] | Jiao Z B, Luan J H, Miller M K, et al.Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles[J]. Acta Mater., 2015, 84: 283 | [17] | Baik S I, Rawlings M J S, Dunand D C. Atom probe tomography study of Fe-Ni-Al-Cr-Ti ferritic steels with hierarchically-structured precipitates[J]. Acta Mater., 2018, 144: 707 | [18] | Jiang S H, Wang H, Wu Y, et al.Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460 | [19] | Bagot P A J, Silk O B W, Douglas J O, et al. An atom probe tomography study of site preference and partitioning in a nickel-based superalloy[J]. Acta Mater., 2017, 125: 156 | [20] | Meher S, Banerjee R.Partitioning and site occupancy of Ta and Mo in Co-base γ/γ′ alloys studied by atom probe tomography[J]. Intermetallics, 2014, 49: 138 | [21] | Huang Y Y, Mao Z G, Noebe R D, et al.The effects of refractory elements on Ni-excesses and Ni-depletions at γ (f.c.c.)/γ′(L12) interfaces in model Ni-based superalloys: Atom-probe tomographic experiments and first-principles calculations[J]. Acta Mater., 2016, 121: 288 | [22] | Hwang J Y, Nag S, Singh A R P, et al. Evolution of the γ/γ' interface width in a commercial nickel base superalloy studied by three-dimensional atom probe tomography[J]. Scr. Mater., 2009, 61: 92 | [23] | Tan X P, Mangelinck D, Perrin-Pellegrino C, et al.Atom probe tomography of secondary γ' precipitation in a single crystal Ni-based superalloy after isothermal aging at 1100 ℃[J]. J. Alloys Compd., 2014, 611: 389 | [24] | Miller M K.Atom Probe Tomography: Analysis at the Atomic Level[M]. New York: Kluwer Academic/Plenum Publishers, 2000: 11, 160 | [25] | Larson D J, Prosa T J, Ulfig R M, et al.Local Electrode Atom Probe Tomography [M]. New York: Spring Press, 2013: 180 | [26] | Yeli G, Auger M A, Wilford K, et al.Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties[J]. Acta Mater., 2017, 125: 38 | [27] | Rhodes C G, Thompson A W.Microstructure and hydrogen performance of alloy-903[J]. Metall. Trans., 1977, 8A: 949 | [28] | Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 43 | [29] | Hornbogen E, Gahr K H Z. Distribution of plastic strain in alloys containing small particles[J]. Metallography, 1975, 8: 181 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|