Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 217-227    DOI: 10.11900/0412.1961.2017.00465
  本期目录 | 过刊浏览 |
奥氏体/铁素体界面迁移与元素配分的研究进展
陈浩, 张璁雨(), 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚
清华大学材料学院教育部先进材料重点实验室 北京 100084
Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview
Hao CHEN, Congyu ZHANG(), Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG
The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2925 KB)   HTML
摘要: 

相变是钢铁材料微观组织调控的关键手段。高性能化的发展需要对钢铁材料组织进行更加精细的调控,这也对相变理论的认知提出了更高的要求。奥氏体-铁素体相变是先进高强钢制备过程中最为重要的相变之一。相变过程中的界面迁移与元素配分行为在很大程度上决定了钢铁材料制备过程中组织的演化过程,对实现微观组织的精细化调控至关重要,一直以来是钢铁相变领域的研究热点与难点。本文从理论模型和实验研究2方面,简要综述了近年来国内外关于奥氏体-铁素体相变的界面迁移与元素配分行为的研究进展,并对该研究方向尚未解决的科学问题进行了讨论与展望。

关键词 界面迁移动力学奥氏体铁素体局域平衡    
Abstract

Phase transformation is one of the most effective methods to tailor microstructure of steels. In order to develop high performance steels, microstructure has to be precisely tuned, which requires a deep understanding of phase transformation. The austenite to ferrite transformation in steels has been of great interest for several decades due to its considerable importance in the processing of modern high performance steels, and it has been investigated from various aspects. Mechanism of interface migration and alloying elements partitioning during the austenite to ferrite transformation was regarded as one of the most significant and challenging topics in the field. This paper briefly summarized the recent progress in the understanding of this topic from both theoretical and experimental perspectives, and would also provide discussions and outlook of the unresolved issues.

Key wordsinterface migration    kinetics    austenite    ferrite    local equilibrium
收稿日期: 2017-11-06      出版日期: 2017-12-11
基金资助:国家重点研发计划项目No.2016YFB0300104及国家自然科学基金项目Nos.51501099和51471094
作者简介:

作者简介 陈 浩,男,1986年生,助理教授,博士

引用本文:

陈浩, 张璁雨, 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚. 奥氏体/铁素体界面迁移与元素配分的研究进展[J]. 金属学报, 2018, 54(2): 217-227.
Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview. Acta Metall Sin, 2018, 54(2): 217-227.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00465      或      http://www.ams.org.cn/CN/Y2018/V54/I2/217

图1  Fe-C-M三元系准平衡(PE)示意图
图2  Fe-C-M三元系局域平衡(LE)示意图
图3  不同浓度Fe-Ni、Fe-Mn和Fe-Co合金中奥氏体-铁素体相变开始温度Fs和铁素体-奥氏体相变开始温度As与新相和母相自由能相等温度(T0)的偏差[74]
图4  Fe-Ni、Fe-Mn和Fe-Co合金中界面迁移率和温度的关系[74]
图5  Fe-0.17Mn-0.023C (质量分数,%)合金在885~860 ℃间进行γ-α循环相变中膨胀量随温度的变化及PE和LE模型对α/γ界面位置随温度变化的模拟结果[101]
图6  Fe-0.49Mn-0.1C (质量分数,%)合金在842~785 ℃间进行γ-α循环相变中膨胀量随温度的变化及经过1、2、6个循环后Mn的浓度分布模拟结果[104]
[1] Christian J W.The theory of transformations in metals and alloys [M]. Oxford: Pergamon Press, 1975: 1
[2] Offerman S E, Van Dijk N H, Sietsma J, et al. Grain nucleation and growth during phase transformations[J]. Science, 2002, 298: 1003
[3] Van Dijk N H, Offerman S E, Sietsma J, et al. Barrier-free heterogeneous grain nucleation in polycrystalline materials: The austenite to ferrite phase transformation in steel[J]. Acta Mater., 2007, 55: 4489
[4] Liu F, Sommer F, Bos C, et al.Analysis of solid state phase transformation kinetics: Models and recipes[J]. Int. Mater. Rev., 2007, 52: 193
[5] Purdy G, ?gren J, Borgenstam A, et al.ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces[J]. Metall. Mater. Trans., 2011, 42A: 3703
[6] Gouné M, Danoix F, ?gren J, et al.Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels[J]. Mater. Sci. Eng., 2015, R92: 1
[7] Chen H, Van Der Zwaag S. An overview of the cyclic partial austenite-ferrite transformation concept and its potential[J]. Metall. Mater. Trans., 2017, 48A: 2720
[8] Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[9] Krielaart G P, Sietsma J, Van Der Zwaag S. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J]. Mater. Sci. Eng., 1997, A237: 216
[10] Liu Y C, Sommer F, Mittemeijer E J.Phase Transformations in Steels[M]. Vol.2, Amsterdam: Elsevier, 2012: 311
[11] Kempen A T W, Sommer F, Mittemeijer E J. The kinetics of the austenite-ferrite phase transformation of Fe-Mn: Differential thermal analysis during cooling[J]. Acta Mater., 2002, 50: 3545
[12] Liu Y C, Sommer F, Mittemeijer E J.Kinetics of the abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Mater., 2004, 52: 2549
[13] Hultgren A.Isothermal transformation of austenite[J]. Trans. Am. Soc. Met., 1947, 39: 915
[14] Hillert M.Introduction to paraequilibrium [R]. Internal Report, Swedish Institute of Metals Research, Stockholm, 1953
[15] Bhadeshia H K D H. Some difficulties in the theory of diffusion-controlled growth in substitutionally alloyed steels[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 396
[16] Hillert M, ?gren J.On the definitions of paraequilibrium and orthoequilibrium[J]. Scr. Mater., 2004, 50: 697
[17] Speer J G, Matlock D K, DeCooman B C, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. ?gren, Scripta Materialia, 50, 697-9 (2004)[J]. Scr. Mater., 2005, 52: 83
[18] Hillert M, ?gren J.Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scr. Mater., 2005, 52: 87
[19] Kirkaldy J.Diffusion in multicomponent metallic systems: I. Phenomenological theory for substitutional solid solution alloys[J]. Can. J. Phys., 1958, 36: 899
[20] Kirkaldy J S.Diffusion in multicomponent metallic systems: II. Solutions for two-phase systems with applications to transformations in steel[J]. Can. J. Phys., 1958, 36: 907
[21] Kirkaldy J S.Diffusion in multicomponent metallic systems: III. The motion of planar phase interfaces[J]. Can. J. Phys., 1958, 36: 917
[22] Kirkaldy J.Diffusion in multicomponent metallic systems: IV. A general theorem for construction of multicomponent solutions from solutions of the binary diffusion equation[J]. Can. J. Phys., 1959, 37: 30
[23] Coates D E.Diffusion-controlled precipitate growth in ternary systems I[J]. Metall. Trans., 1972, 3: 1203
[24] Coates D E.Diffusional growth limitation and hardenability[J]. Metall. Trans., 1973, 4: 2313
[25] Coates D E.Diffusion controlled precipitate growth in ternary systems: II[J]. Metall. Trans., 1973, 4: 1077
[26] Coates D E.Precipitate growth kinetics for Fe-C-X alloys[J]. Metall. Mater. Trans., 1973, 4B: 395
[27] Zhang C Y, Yang Z G, Enomoto M, et al.Prediction of Ar3 during very slow cooling in low alloy steels[J]. ISIJ Int., 2016, 56: 678
[28] Van Der Ven A, Delaey L. Models for precipitate growth during the γ→α+γ transformation in Fe-C and Fe-C-M alloys[J]. Prog. Mater. Sci., 1996, 40: 181
[29] Sietsma J, Van Der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
[30] Liu Z Y, Yang Z G, Li Z D, et al.Simulation of ledgewise growth kinetics of proeutectiod ferrite under interfacial reaction-diffusion mixed control model[J]. Acta Metall. Sin., 2010, 46: 390(刘志远, 杨志刚, 李昭东等. 界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟[J]. 金属学报, 2010, 46: 390)
[31] Lücke K, Detert K.A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628
[32] Cahn J W.The impurity-drag effect in grain boundary motion[J]. Acta Metall., 1962, 10: 789
[33] Lücke K, Stüwe H P.On the theory of impurity controlled grain boundary motion[J]. Acta Metall., 1971, 19: 1087
[34] Purdy G R, Brechet Y J M. A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels[J]. Acta Metall., 1995, 43: 3763
[35] Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533
[36] Hillert M, Sundman B.A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys[J]. Acta Metall., 1976, 24: 731
[37] Zurob H S, Panahi D, Hutchinson C R, et al.Self-consistent model for planar ferrite growth in Fe-C-X alloys[J]. Metall. Mater. Trans., 2013, 44A: 3456
[38] Odqvist J, Hillert M, ?gren J.Effect of alloying elements on the γ to α transformation in steel. I[J]. Acta Mater., 2002, 50: 3213
[39] Chen H, Van Der Zwaag S. A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe-C-M alloys[J]. Acta Mater., 2014, 72: 1
[40] Chen H, Zhu K Y, Zhao L, et al.Analysis of transformation stasis during the isothermal bainitic ferrite formation in Fe-C-Mn and Fe-C-Mn-Si alloys[J]. Acta Mater., 2013, 61: 5458
[41] Tanaka T, Aaronson H I, Enomoto M.Growth kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X2 alloys[J]. Metall. Mater. Trans., 1995, 26A: 561
[42] Aaronson H I, Reynolds W T Jr, Purdy G R. Coupled-solute drag effects on ferrite formation in Fe-C-X systems[J]. Metall. Mater. Trans., 2004, 35A: 1187
[43] Guo H, Enomoto M.Effects of substitutional solute accumulation at α/γ boundaries on the growth of ferrite in low carbon steels[J]. Metall. Mater. Trans., 2007, 38A: 1152
[44] Qiu C, Zurob H S, Hutchinson C R.The coupled solute drag effect during ferrite growth in Fe-C-Mn-Si alloys using controlled decarburization[J]. Acta Mater., 2015, 100: 333
[45] Zhang C Y, Chen H, Zhu K Y, et al.Effect of Mo addition on the transformation stasis phenomenon during the isothermal formation of bainitic ferrite[J]. Metall. Mater. Trans., 2016, 47A: 5670
[46] Rowlinson J S.Translation of J.D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”[J]. J. Stat. Phys, 1979, 20: 197
[47] Van Der Waals J D. Thermodynamische Theorie der Kapillarit?t unter voraussetzung stetiger Dichte?nderung [J]. Z. Phys. Chem., 1894, 13: 657
[48] Boettinger W J, Warren J A, Beckermann C, et al.Phase-field simulation of solidification[J]. Annu. Rev. Mater. Res., 2002, 32: 163
[49] Militzer M.Computer simulation of microstructure evolution in low carbon sheet steels[J]. ISIJ Int., 2007, 47: 1
[50] Chen L Q.Phase-field models for microstructure evolution[J]. Annu. Rev. Mater. Res., 2002, 32: 113
[51] Allen S M, Cahn J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metall., 1979, 27: 1085
[52] Cahn J W.On spinodal decomposition[J]. Acta Metall., 1961, 9: 795
[53] Steinbach I, Pezzolla F, Nestler B, et al.A phase field concept for multiphase systems[J]. Phys: Nonlin. Phenom., 1996, 94D: 135
[54] Steinbach I, Pezzolla F.A generalized field method for multiphase transformations using interface fields[J]. Phys: Nonlin. Phenom., 1999, 134D: 385
[55] Nakajima K, Apel M, Steinbach I.The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study[J]. Acta Mater., 2006, 54: 3665
[56] Militzer M, Mecozzi M G, Sietsma J, et al.Three-dimensional phase field modelling of the austenite-to-ferrite transformation[J]. Acta Mater., 2006, 54: 3961
[57] Steinbach I, Apel M.The influence of lattice strain on pearlite formation in Fe-C[J]. Acta Mater., 2007, 55: 4817
[58] Mecozzi M G, Sietsma J, Van Der Zwaag S. Phase field modelling of the interfacial condition at the moving interphase during the γ→α transformation in C-Mn steels[J]. Comput. Mater. Sci., 2005, 34: 290
[59] Militzer M.Phase field modeling of microstructure evolution in steels[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 106
[60] Loginova I, ?gren J, Amberg G.On the formation of Widmanst?tten ferrite in binary Fe-C - Phase-field approach[J]. Acta Mater., 2004, 52: 4055
[61] Loginova I, Odqvist J, Amberg G, et al.The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys[J]. Acta Mater., 2003, 51: 1327
[62] Zhang J, Zheng C W, Li D Z.Modeling of isothermal austenite to ferrite transformation in a Fe-C alloy by phase-field method[J]. Acta Metall. Sin., 2016, 52: 1449(张军, 郑成武, 李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程[J]. 金属学报, 2016, 52: 1449)
[63] Yeon D H, Cha P R, Yoon J K.A phase field study for ferrite-austenite transitions under para-equilibrium[J]. Scr. Mater., 2001, 45: 661
[64] Mecozzi M G, Sietsma J, Van Der Zwaag S, et al. Analysis of the γ→α transformation in a C-Mn steel by phase-field modeling[J]. Metall. Mater. Trans., 2005, 36A: 2327
[65] Chen H, Zhu B Q, Militzer M.Phase field modeling of cyclic austenite-ferrite transformations in Fe-C-Mn alloys[J]. Metall. Mater. Trans., 2016, 47A: 3873
[66] Zhu B Q, Chen H, Militzer M.Phase-field modeling of cyclic phase transformations in low-carbon steels[J]. Comput. Mater. Sci., 2015, 108: 333
[67] Zhang J, Chen W X, Zheng C W, et al.Phase-field modeling of austenite-to-ferrite transformation in Fe-C-Mn ternary alloys[J]. Acta Metall. Sin., 2017, 53: 760(张军, 陈文雄, 郑成武等. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53: 760)
[68] Bradley J, Rigsbee J, Aaronson H I.Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C alloys[J]. Metall. Trans., 1977, 8A: 323
[69] Krielaart G P, Van Der Zwaag S. Simulations of pro-eutectoid ferrite formation using a mixed control growth model[J]. Mater. Sci. Eng., 1998, A246: 104
[70] Liu Y C, Sommer F, Mittemeijer E J.The austenite-ferrite transformation of ultralow-carbon Fe-C alloy; transition from diffusion-to interface-controlled growth[J]. Acta Mater., 2006, 54: 3383
[71] Hamada J, Enomoto M, Fujishiro T, et al.In-situ observation of the growth of massive ferrite in very low-carbon Fe-Mn and Ni alloys[J]. Metall. Mater. Trans., 2014, 45A: 3781
[72] Aaronson H I, Vasudevan V K.General discussion session of the symposium on “The mechanisms of the massive transformation”[J]. Metall. Mater. Trans., 2002, 33A: 2445
[73] Borgenstam A, Hillert M.Massive transformation in the Fe-Ni system[J]. Acta Mater., 2000, 48: 2765
[74] Zhu J N, Luo H W, Yang Z G, et al.Determination of the intrinsic α/γ interface mobility during massive transformations in interstitial free Fe-X alloys[J]. Acta Mater., 2017, 133: 258
[75] Odqvist J.On the transition to massive growth during the γ→α transformation in Fe-Ni alloys[J]. Scr. Mater., 2005, 52: 193
[76] Enomoto M, White C L, Aaronson H I.Evaluation of the effects of segregation on austenite grain boundary energy in Fe-C-X alloys. Metall. Trans., 1988, 19A: 1807
[77] Speich G, Szirmae A, Richards M.Formation of austenite from ferrite and ferrite-carbide aggregates[J]. Trans. metall. Soc. AIME, 1969, 245: 1063
[78] Krielaart G P, Van Der Zwaag S. Kinetics of γ→α phase transformation in Fe-Mn alloys containing low manganese[J]. Mater. Sci. Technol., 1998, 14: 10
[79] Wits J J, Kop T A, Van Leeuwen Y, et al.A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys[J]. Mater. Sci. Eng., 2000, A283: 234
[80] Hillert M, H?glund L.Mobility of α/γ phase interfaces in Fe alloys[J]. Scr. Mater., 2006, 54: 1259
[81] Liu Y C, Sommer F, Mittemeijer E J.Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Mater., 2003, 51: 507
[82] Liu Y C, Sommer F, Mittemeijer E J.Abnormal austenite-ferrite transformation behaviour of pure iron[J]. Philos. Mag., 2004, 84: 1853
[83] Liu Z Q, Miyamoto G, Yang Z G, et al.Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys[J]. Acta Mater., 2013, 61: 3120
[84] Xia Y, Miyamoto G, Yang Z G, et al.Effects of Mo on carbon enrichment during proeutectoid ferrite transformation in hypoeutectoid Fe-C-Mn alloys[J]. Metall. Mater. Trans., 2015, 46A: 2347
[85] Liu Z Y, Yang Z G, Li Z D, et al.PLE/NPLE transition temperature of γ→α transformation of Fe-C-X alloy under hot deformation condition[J]. Acta Metall. Sin., 2008, 44: 703(刘志远, 杨志刚, 李昭东等. 热变形条件下Fe-C-X合金钢γ→α 相变的PLE/NPLE转变温度[J]. 金属学报, 2008, 44: 703)
[86] Kubo Y, Hamada K, Urano A.Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis[J]. Ultramicroscopy, 2013, 135: 64
[87] Oi K, Lux C, Purdy G R.A study of the influence of Mn and Ni on the kinetics of the proeutectoid ferrite reaction in steels[J]. Acta Mater., 2000, 48: 2147
[88] Hutchinson C R, Fuchsmann A, Brechet Y.The diffusional formation of ferrite from austenite in Fe-C-Ni alloys[J]. Metall. Mater. Trans., 2004, 35A: 1211
[89] Guo H, Purdy G R, Enomoto M, et al.Kinetic transitions and substititional solute (Mn) fields associated with later stages of ferrite growth in Fe-C-Mn-Si[J]. Metall. Mater. Trans., 2006, 37A: 1721
[90] Zhang G H, Heo Y U, Song E J, et al.Kinetic transition during the growth of proeutectoid ferrite in Fe-C-Mn-Si quaternary steel[J]. Met. Mater. Int., 2013, 19: 153
[91] Capdevila C, Cornide J, Tanaka K, et al.Kinetic transition during ferrite growth in Fe-C-Mn medium carbon steel[J]. Metall. Mater. Trans., 2011, 42A: 3719
[92] Danoix F, Sauvage X, Huin D, et al.A direct evidence of solute interactions with a moving ferrite/austenite interface in a model Fe-C-Mn alloy[J]. Scr. Mater., 2016, 121: 61
[93] Van Landeghem H P, Langelier B, Gault B, et al. Investigation of solute/interphase interaction during ferrite growth[J]. Acta Mater., 2017, 124: 536
[94] Hutchinson C R, Fuchsmann A, Zurob H S, et al.A novel experimental approach to identifying kinetic transitions in solid state phase transformations[J]. Scr. Mater., 2004, 50: 285
[95] Zurob H S, Hutchinson C R, Béché A, et al.A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe-C-Mn: A possible role of interfacial segregation[J]. Acta Mater., 2008, 56: 2203
[96] Zurob H S, Hutchinson C R, Bréchet Y, et al.Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys[J]. Acta Mater., 2009, 57: 2781
[97] Phillion A, Zurob H S, Hutchinson C R, et al.Studies of the influence of alloying elements on the growth of ferrite from austenite under decarburization conditions: Fe-C-Nl alloys[J]. Metall. Mater. Trans., 2004, 35A: 1237
[98] Hutchinson C R, Zurob H S, Bréchet Y.The growth of ferrite in Fe-C-X alloys: The role of thermodynamics, diffusion, and interfacial conditions[J]. Metall. Mater. Trans., 2006, 37A: 1711
[99] Béché A, Zurob H S, Hutchinson C R.Quantifying the solute drag effect of Cr on ferrite growth using controlled decarburization experiments[J]. Metall. Mater. Trans., 2007, 38A: 2950
[100] Qiu C, Zurob H S, Panahi D, et al.Quantifying the solute drag effect on ferrite growth in Fe-C-X alloys using controlled decarburization experiments[J]. Metall. Mater. Trans., 2013, 44A: 3472
[101] Chen H, Appolaire B, Van Der Zwaag S. Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling[J]. Acta Mater., 2011, 59: 6751
[102] Chen H, Gamsj?ger E, Schider S, et al.In situ observation of austenite-ferrite interface migration in a lean Mn steel during cyclic partial phase transformations[J]. Acta Mater., 2013, 61: 2414
[103] Chen H, Kuziak R, Van Der Zwaag S. Experimental evidence of the effect of alloying additions on the stagnant stage length during cyclic partial phase transformations[J]. Metall. Mater. Trans., 2013, 44A: 5617
[104] Chen H, Van Der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages[J]. Acta Mater., 2013, 61: 1338
[105] Sun W W, Zurob H S, Hutchinson C R.Coupled solute drag and transformation stasis during ferrite formation in Fe-C-Mn-Mo[J]. Acta Mater., 2017, 139: 62
[1] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[2] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[3] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[4] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[5] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[6] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[7] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[8] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[9] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[10] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[11] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[12] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[13] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[14] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[15] 张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.