Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 905-910    DOI: 10.11900/0412.1961.2017.00399
  本期目录 | 过刊浏览 |
单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响
杨海欧1, 尚旭亮1, 王理林2, 王志军1(), 王锦程1, 林鑫1
1 西北工业大学凝固技术国家重点实验室 西安 710072
2 西安理工大学材料科学与工程学院 西安 710048
Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution
Haiou YANG1, Xuliang SHANG1, Lilin WANG2, Zhijun WANG1(), Jincheng WANG1, Xin LIN1
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(2811 KB)   HTML
摘要: 

采用LSCM、EIS和动电位极化曲线等测试手段研究了Co、Fe以及Ni对CoCrFeNi单相高熵合金体系在3.5%NaCl (质量分数)溶液中耐蚀性能的影响。结果表明,当Co、Cr含量相同时,增加Fe含量的同时减少Ni含量,能够降低该合金体系的维钝电流密度;当Fe、Cr含量相同时,增加Co含量的同时减少Ni含量,也能够降低该合金体系的维钝电流密度,从而提高其耐蚀性;当Cr含量相同时,减少Co含量,同时增加Fe和Ni的含量,能够提高合金的自腐蚀电位,降低合金发生腐蚀的倾向。

关键词 高熵合金CoCrFeNi耐蚀性能元素含量    
Abstract

High entropy alloys (HEAs) origin from a new alloy design concept with multi-principal elements, which have attracted significant interests in the past decade. The high configurational entropy in HEAs results in simple solid solutions with fcc and bcc structures. Especially, the single solid solution CoCrFeNi alloy exhibits excellent properties in many aspects, such as mechanical properties, thermal stability, radiation resistance and corrosion resistance. The excellent corrosion resistance of CoCrFeNi alloy is ascribed to the single-phase structure and uniform element distribution coupled with much higher Cr content than stainless steel. The single-phase structure and uniform element distribution can prevent the occurrence of localized corrosion, and higher Cr content can protect the alloy surface better with the form of oxidation film. Moreover, the corrosion resistance of CoCrFeNi-based HEAs, such as CoCrFeNiAlx, CoCrFeNiCux, CoCrFeNiTix, have also been extensively investigated. In most CoCrFeNi-based HEAs, the elements of Co, Cr, Fe and Ni are with equal-atomic ratio. However, the equal-atomic ratio is not necessary to obtain satisfactory properties and to ensure the single fcc structure in Co-Cr-Fe-Ni system. Accordingly, it is essential to further consider the effect of alloying elements on the corrosion resistance in Co-Cr-Fe-Ni HEA. In this work, the effect of Co, Fe and Ni elements on the corrosion resistance of single fcc Co-Cr-Fe-Ni system with concentrated constitution but different atomic ratios in 3.5%NaCl solution are investigated by using LSCM and EIS. The potentiodynamic polarization results indicate that the increase of Fe and the decrease of Ni will decrease the passivation current density of the alloys when the Co and Cr contents are equal. With the increase of Co and the decrease of Ni, the alloys show smaller passivation current density and better corrosion resistance when the Fe and Cr contents are equal. With the decrease of Co and the increase of Fe and Ni, the alloys show higher corrosion potential and smaller corrosion tendency when the Cr content is constant. These results will be helpful for the design of corrosion resistant HEAs in NaCl aqueous solution.

Key wordshigh-entropy alloy    CoCrFeNi    corrosion resistance    element content
收稿日期: 2017-09-22      出版日期: 2018-01-30
ZTFLH:  TG178  
基金资助:国家重点研发计划项目No.2016YFB0700300及国家自然科学基金项目Nos.51471133和51771149
作者简介:

作者简介 杨海欧,男,1976年生,博士

引用本文:

杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution. Acta Metall Sin, 2018, 54(6): 905-910.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00399      或      http://www.ams.org.cn/CN/Y2018/V54/I6/905

图1  CoaCr20FebNi80-a-b体系在3.5%NaCl溶液中的动电位极化曲线
No. Alloy Eb / mV ip / (μAcm-2) Ecorr / mV icorr / (μAcm-2)
1 Co20Cr20Fe20Ni40 998 8.67 19 0.50
2 Co20Cr20Fe30Ni30 992 2.32 113 1.65
3 Co20Cr20Fe40Ni20 1009 1.95 -76 0.03
4 Co26.67Cr20Fe26.67Ni26.66 952 4.72 77 1.78
5 Co30Cr20Fe20Ni30 980 3.20 72 2.22
6 Co30Cr20Fe30Ni20 970 2.01 12 2.32
7 Co40Cr20Fe20Ni20 987 3.13 33 0.61
表1  CoaCr20FebNi80-a-b体系在3.5%NaCl溶液中的电化学参数
图2  CoaCr20FebNi80-a-b体系在3.5%NaCl溶液中动电位极化后表面腐蚀的LSCM像及三维形貌
图3  CoaCr20FebNi80-a-b体系在3.5%NaCl溶液中的EIS
Co content Alloy ip / (μAcm-2)
20% Co20Cr20Ni40Fe20 8.67
Co20Cr20Ni30Fe30 2.32
Co20Cr20Ni20Fe40 1.95
30% Co30Cr20Ni30Fe20 3.20
Co30Cr20Ni20Fe30 2.01
表2  Co含量为20%和30%时,Ni和Fe含量对CoaCr20FebNi80-a-b体系耐蚀性能的影响
Fe content Alloy ip / (μAcm-2)
20% Co20Cr20Fe20Ni40 8.67
Co30Cr20Fe20Ni30 3.20
Co40Cr20Fe20Ni20 3.13
30% Co20Cr20Fe30Ni30 2.32
Co30Cr20Fe30Ni20 2.01
表3  Fe含量为20%和30%时,Co和Ni含量变化对CoaCr20FebNi80-a-b体系耐蚀性能的影响
[1] Zhang Y, Zuo T T, Tang Z, et al.Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
[2] Murty B S, Yeh J W, Ranganathan S.High-Entropy Alloys[M]. London: Butterworth-Heinemann, 2014: 1
[3] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
[4] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[5] Sohn S, Liu Y H, Liu J B, et al.Noble metal high entropy alloys[J]. Scr. Mater., 2017, 126: 29
[6] Tsai M H, Yeh J W.High-entropy alloys: A critical review[J]. Mater. Lett., 2014, 2: 107
[7] Shi Y Z, Yang B, Liaw P K.Corrosion-resistant high-entropy alloys: A review[J]. Metals, 2017, 7: 43
[8] Xiang C, Wang J Z, Fu H M, et al.Corrosion behavior of several high-entropy alloys in high temperature high pressure water[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107(向超, 王家贞, 付华萌等. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 107)
[9] Tang Z, Huang L, He W, et al.Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J]. Entropy, 2014, 16: 895
[10] Kozak R, Sologubenko A, Steurer W.Single-phase high-entropy alloys—An overview[J]. Z. Kristallogr., 2015, 230: 55
[11] Qiu Y, Thomas S, Gibson M A, et al.Corrosion of high entropy alloys[J]. NPJ Mater. Degrad., 2017, 1: 15
[12] Wu Z, Bei H, Otto F, et al.Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131
[13] Chen Y Y, Hong U T, Yeh J W, et al.Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 ℃ high-purity water[J]. Scr. Mater., 2006, 54: 1997
[14] Chen Y Y, Duval T, Hong U T, et al.Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 ℃ high-purity water[J]. Mater. Lett., 2007, 61: 2692
[15] Hsu Y J, Chiang W C, Wu J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Mater. Chem. Phys., 2005, 92: 112
[16] Lin C M, Tsai H L.Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19: 288
[17] Chou Y L, Yeh J W, Shih H C.Effect of molybdenum on the pitting resistance of Co1.5CrFeNi1.5Ti0.5Mox alloys in chloride solutions[J]. Corrosion, 2011, 67: 085002
[18] Cheng J B, Liang X B, Xu B S.Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings[J]. Surf. Coat. Technol., 2014, 240: 184
[19] Shang C Y, Axinte E, Sun J, et al.CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Mater. Des., 2017, 117: 193
[20] Qiu X W, Wu M J, Liu C G, et al.Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids[J]. J. Alloys Compd., 2017, 708: 353
[21] Wang P, Cai H N, Cheng X W.Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2-x (x=1.0, 1.2, 1.5, 1.8 mol) high entropy alloys[J]. J. Alloys Compd., 2016, 662: 20
[22] Chou Y L, Yeh J W, Shih H C.The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corros. Sci., 2010, 52: 2571
[23] Qiu X W, Liu C G.Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. J. Alloys Compd., 2013, 553: 216
[24] He F, Wang Z J, Wu Q F, et al.Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system[J]. Scr. Mater., 2017, 131: 42
[25] Shang X L, Wang Z J, He F, et al.The intrinsic mechanism of corrosion resistance for FCC high entropy alloys[J]. Sci. China Technol. Sci., 2018, 61: 189
[26] Hamdy A S, El-Shenawy E, El-Bitar T.Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl[J]. Int. J. Electrochem. Sci., 2006, 1: 171
[27] Kumar N, Fusco M, Komarasamy M, et al.Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy[J]. J. Nucl. Mater., 2017, 495: 154
[28] Shi Y Z, Yang B, Xie X, et al.Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corros. Sci., 2017, 119: 33
[29] Kocijan A, Milo?ev I, Pihlar B.Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis[J]. J. Mater. Sci.: Mater. Med., 2004, 15: 643
[30] Sekine I, Chinda A.Comparison of the corrosion behavior of pure Fe, Ni, Cr, and type 304 stainless steel in formic acid solution[J]. Corrosion, 1984, 40: 95
[1] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[2] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[3] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[4] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
[5] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
[6] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[7] 张松, 吴臣亮, 王超, 伊俊振, 张春华. 铁单元素基合金表面激光高熵合金化涂层的制备*[J]. 金属学报, 2014, 50(5): 555-560.
[8] 贺宏, 李静媛, 秦丽雁, 王一德, 房菲. 不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*[J]. 金属学报, 2014, 50(1): 1-10.
[9] 韩啸,陈吉,孙成,武占文,吴新春,张星航. 块体超细晶304L不锈钢的腐蚀及钝化性能的研究[J]. 金属学报, 2013, 49(3): 265-270.
[10] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[11] 张素芳,杨潇,张勇. Al3CrCuFeNi2高熵合金单晶材料的制备及性能[J]. 金属学报, 2013, 49(11): 1473-1480.
[12] 张晖 潘冶 何宜柱 . 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011, 47(8): 1075-1079.
[13] 翟秋亚 贾晨 康再祥 徐锦锋. 快速凝固Cu25Al10Ni25Fe20Co20高熵合金箔的微观结构及其电容储能焊特性[J]. 金属学报, 2011, 47(11): 1378-1381.
[14] 项秋伟 曹思 孙道明 李劲 蒋益明. Al 5083表面电泳沉积稀土改性膜制备和表征[J]. 金属学报, 2010, 46(3): 352-357.
[15] 吴博 李红凯 林国强 付宇 候明 衣宝廉. 不锈钢双极板电弧离子镀Cr1-xNx薄膜改性研究[J]. 金属学报, 2009, 45(9): 1125-1129.