Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 243-248    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY
SUN Yajuan; WEI Xianshun; HUANG Yongjiang; SHEN Jun
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
Cite this article: 

SUN Yajuan WEI Xianshun HUANG Yongjiang SHEN Jun. EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY. Acta Metall Sin, 2009, 45(2): 243-248.

Download:  PDF(6910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The glass forming ability (GFA) of a newly developed Zr50.7Cu28Ni9Al12.3 alloy can be improved by minor addition of Gd element, for example, the amorphous alloy Zr50.7Cu28Ni9Al12.3 has a critical diameter of 14 mm, but the alloy added by 1%Gd (atomic fraction), (Zr50.7Cu28Ni9Al12.3)99Gd1,
has 16 mm critical diameter. However, the Gd addition decreases the fracture strength and plastic strain under compressive condition. Meanwhile, with Gd addition increasing, the fracture mode transforms from pure shear to shear with hysterical failure. A combination of vein pattern and nanoscale corrugations can be clearly observed on the fracture surfaces of the alloys with Gd addition.

Key words:  Zr--based bulk amorphous alloy      glass forming ability      mechanical property     
Received:  14 July 2008     
ZTFLH: 

TG113.25

 
Fund: 

Supported by National Natural Science Foundation of China (No.50771040)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/243

[1] Johnson W L. MRS Bull, 1999; 24: 42
[2] Wang W H, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45
[3] Telford M. Mater Today, 2004; 7: 36
[4] Ashby M F, Greer A L. Scr Mater, 2006; 54: 321
[5] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342
[6] Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Mater Trans JIM, 1993; 34: 1234
[7] Inoue A, Zhang T. Mater Trans JIM, 1996; 37: 185
[8] Xing L Q, Ochin P, HarmelinM, Faudot F, Bigot J, Chevalier J P. Mater Sci Eng, 1996; A220: 155
[9] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z. Acta Mater, 2008; 56: 1785
[10] Gebert A, Eckert J, Sculzt L. Acta Mater, 1998; 46: 5475
[11] Wang W H, Bian Z, Wen P, Zhang Y, Pana M X, Zhao D Q. Intermetallics, 2002; 10: 1249
[12] Yan M, Zou J, Shen J. Acta Mater, 2006; 54: 3627
[13] Iqbal M, Hu Z Q, Zhang H F, Sun W S, Akhter J I. J Non–Cryst Solids, 2006; 352: 3290
[14] Iqbal M, Akhter J I, Zhang H F, Hu Z Q. J Non–Cryst Solids, 2008; 354: 3291
[15] Wang W H. Prog Mater Sci, 2007; 52: 540
[16] Turnbull D. Contemp Phys, 1969; 10: 473
[17] Lu Z P, Liu C T. Phys Rev Lett, 2003; 91: 115505
[18] Fu H M, ang H, Zhang H F, Hu Z Q. Scr Mater, 2006; 55: 147
[19] Sun Y Y, Liu B, Chen Q, Liu L. Acta Metall Sin, 2007; 43: 177
(孙阳阳, 刘 兵, 谌祺, 柳林. 金属学报, 2007; 43: 177)
[20] Ma L Q, Wang L M, Zhang T, Inoue A. Acta Metall Sin, 1999; 35: 631
(马立群, 王立民, 张涛, 井上明久. 金属学报, 1999; 35: 631)
[21] Li R, Pang S J, Ma C L, Zhang T. Acta Mater, 2007; 55: 3719
[22] Poon S J, Shiflet G J, Guo F Q, Ponnambalam V. J Non–Cryst Solids, 2003; 317: 1
[23] Kanibolotsky D S, Lisnyak V V. J Non–Cryst Solids, 2004; 333: 194
[24] Battezzati L, Garrone E. Z Metallkd, 1984; 75: 305
[25] Guo F Q, Poon S J, Shiflet G J. Appl Phys Lett, 2003; 83: 2575
[26] Yang B, Liu C T, Nieh T G. Appl Phys Lett, 2006; 88: 221911
[27] Shen J, Liang W Z, Sun J F. Appl Phys Lett, 2006; 89: 121908
[28] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J. Phys Rev Lett, 2005; 94: 125510
[29] Pan D G, Zhang H F, Wang A M, Wang Z G, Hu Z Q. J Alloy Compd, 2007; 438: 145
[30] Wang G, Wang Y T, Liu Y H, Pan M X, Zhao D Q, Wang W H. Appl Phys Lett, 2006; 89: 121909
[31] Zhang Z F, Wu F F, Gao W, Tan J, Wang Z G, Stoica M, Das J, Eckert J, Shen B L, Inoue A. Appl Phys Lett, 2006; 89: 251917
[32] Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H. Phys Rev Lett, 2007; 98: 235501
[33] Zhang Z F, Zhang H, Shen B L, Inoue A, Eckert J. Philos Mag Lett, 2006; 86: 643
[34] Zhang Z F, Wu F F, Fan J T, Zhang H. Sci China, 2008; 38G: 349
(张哲峰, 伍复发, 范吉堂, 张辉.中国科学, 2008; 38G: 349)
[35] Zhang Z F, Wu F F, He G, Eckert J. J Mater Sci Technol, 2007; 23: 747
[36] Donovan P E, Stobbs W M. Acta Metall, 1981; 29: 1419
[37] Spaepen F. Acta Metall, 1977; 25: 407
[38] Argon A S. Acta Metall, 1979; 27: 47
[39] Liu L F, Dai L H, Bai Y L, Wei B C. J Non–Cryst Solids, 2005; 351: 3259
[40] Wright W J, Hufnagel T C, Nix W D. J Appl Phys, 2003; 93: 1432
[41] Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H. Appl Phys Lett, 2008; 92: 171909

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!