Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 237-242    DOI:
论文 Current Issue | Archive | Adv Search |
CRYSTALLIZATION PROCESS AND NON–ISOTHERMAL CRYSTALLIZATION KINETICS OF MELT–SPUN Nd–Fe–B AMORPHOUS THICK RIBBONS
WANG Dapeng; BAO Xiaoqian; ZHANG Maocai; ZHU Jie
State Key Laboratory of Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

WANG Dapeng; BAO Xiaoqian; ZHANG Maocai; ZHU Jie. CRYSTALLIZATION PROCESS AND NON–ISOTHERMAL CRYSTALLIZATION KINETICS OF MELT–SPUN Nd–Fe–B AMORPHOUS THICK RIBBONS. Acta Metall Sin, 2009, 45(2): 237-242.

Download:  PDF(737KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Crystallization processes and non–isothermal crystallization kinetics of Nd6Fe72B22 and Nd6Fe68Ti4B17C5 amorphous thick ribbons rapidly quenched at a roller running rate of 12 m/s were investigated by means of DSC, XRD, Kempen model and Kissinger equation, respectively.
Two thick ribbons show different crystallization processes and kinetic mechanisms. The crystallization processes of Nd6Fe72B22 and Nd6Fe68Ti4B17C5 alloys can be discribed as: amorphous phase (AP)→ Nd2Fe23B3→Nd2Fe14B+ α--Fe +Fe3B→Nd2Fe14B+α--Fe+Fe3B+NdFe4B4, and AP→Nd2(Fe, Ti)14(B, C)+α--Fe + Fe3B, respectively. Different from polymorphic crystallization controlled by interface for Nd6Fe72B22 alloy, the crystallization of Nd6Fe68Ti4B17C5 is eutectoidic and the nucleus growth is controlled by diffusion.

Key words:  Nd–Fe–B      amorphous alloy      crystallization kinetics      crystallization activationt energy     
Received:  10 July 2008     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/237

[1] Croat J J, Herbst J F, Lee R W, Pinkerton F E. J Appl Phys, 1984; 55: 2078
[2] Skomski R. J Appl Phys, 1994; 76: 7059
[3] Biswas K, Ram S, Schultz L, Eckert J. J Alloys Compd, 2005; 397: 104
[4] Li F S, Zhang T, Guan S K, Shen N F. Trans Nonferrous Met Soc China, 2004; 14: 840
[5] Guschl P C, Kim H S, Otaigbe J U. J Appl Polym Sci, 2001; 83: 1091
[6] Horiguchi T, Sekizawa H, Murata M, Kondo H, Kawagoe T, Iguchi Y, Kohn K, Mizoguchi T. Key Eng Mater, 1990; 40: 87
[7] Gao Y Q, Wang W. J Non–Cryst Solids, 1986; 81: 129
[8] Kempen A TW, Sommer F, Mittemeijer E J. J Mater Sci, 2002; 37: 1321
[9] Kissinger H E. Anal Chem, 1957; 29: 1702
[10] Lu K. Mater Sci Eng, 1996; R16: 161
[11] Trujillo M P, Orozco A, Casas–Ruiz M, Ligero R A, Jimenez–Garay R. Mater Lett, 1995; 24: 287
[12] Cahn J W. Acta Metall, 1956; 4: 572
[13] Yinnon H, Uhlmann D R. J Non–Cryst Solids, 1983; 54: 253
[14] Gao Y Q,WangW, Zheng F Q, Liu X. J Non–Cryst Solids, 1986; 81: 135
[15] Jain R, Saxena N S, Bhandari D, Sharma S K, Rao K V R. Phys B (Amsterdam, Neth), 2001; 301B: 341
[16] Liu X J, Hui X D, Chen G L. Mater Sci Forum, 2005; 475: 3385
[17] Soliman A A, Al–Heniti S, Al–Hajry A, Al–Assiri M, Al–Barakati G. Therm Acta, 2004; 413: 57
[18] Christian J W. Theory of Transformation in Metals and Alloys. 2nd ed., Oxford: Pergamon Press; 1975: 487
[19] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 2817
[20] Wang Y H, Yang Y S. Amorphous Alloys. Beijing: Metallurgical Industry Press; 1989: 96
(王一禾, 杨膺善. 非晶态合金. 北京: 冶金工业出版社; 1989:96)

[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[3] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[7] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[8] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[9] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[10] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[11] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[12] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[13] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[14] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[15] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
No Suggested Reading articles found!