Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (6): 764-768     DOI:
Research Articles Current Issue | Archive | Adv Search |
The method to determine characteristic atom sequences of binary alloy systems
中南大学
Cite this article: 

. The method to determine characteristic atom sequences of binary alloy systems. Acta Metall Sin, 2008, 44(6): 764-768 .

Download:  PDF(1333KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, the method to determine characteristic atom sequences of binary alloy system was pointed out by taking Pt-Ru alloy system as an example. On the basis of lattice constants and heats of formation of experimental value, the energy and volume interaction optimum functions were chosen. The basic information of characteristic atom sequences was determined. The structures and properties of disordered and ordered alloy can be expounded and designed. The correlation between electronic structure and catalytic performance of Pt-Ru alloy was discussed. As the function of coordination of Ru, the potential energy decreases and stability increases. D-orbital vacancy increases and the lattice constants decrease. This lead to strengthen catalytic activity.
Key words:  Pt-Ru alloy system      characteristic atom sequence      property      
Received:  05 November 2007     
ZTFLH:  TG111  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I6/764

[1]Liu G H,Bao H,Li W C.Mater Rev,2001;15(8):10 (刘国华,包宏,李文超.材料导报,2001;15(8):10)
[2]Xie Y Q.Mater Rev,2001;15(4):12 (谢佑卿.材料导报,2001;15(4):12)
[3]Xie Y Q,Ma L Y.J Cent South Inst Mining Metall,1985; 8(1):1 (谢佑卿,马柳莺.中南矿冶学院学报,1985;8(1):1)
[4]Xie Y Q.Sci China,1993;36A:90
[5]Xie Y Q.Chin Sci Bull,1992;37:1529
[6]Xie Y Q.Acta Metall Mater,1994;42:3705
[7]Xie Y Q.Sci China,1998;41E:146
[8]Xie Y Q,Zhang X D.Sci China,1998;41E:157
[9]Xie Y Q,Zhang X D.Sci China,1998;41E:225
[10]Xie Y Q,Peng K Liu X B.Physica,2004;344B:5
[11]Xie Y Q,Liu X B,Peng K,Peng H J.Physica,2004;353B: 15
[12]Xie Y Q,Peng H J,Liu X B,Peng K.Physica,2005;362B: 1
[13]Xie Y Q,Tao H J,Peng H J,Liu X B,Peng K.Physica, 2005;366B:17
[14]Yang X K,Li X,Heng G H.Acta Phys-Chim Sin,2007; 23:389 (杨喜昆,李昕,衡根华.物理化学学报,2007;23:389)
[15]Arico A S,Antonucci P L,Modica E,Monforte G,Baglio V,Antonucci V.Electrochim Acta,2002;47:3723
[16]Gasteiger H,Ross P N,Caims T R.Surf Sci,1994;141: 1795
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!