Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (6): 757-763     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure and mechanical properties evolution of Ti-45Al-5Nb-0.3Y alloy by thermo-mechanical treatments
;yuyong chen;BaoHui Li
哈尔滨工业大学
Cite this article: 

yuyong chen; BaoHui Li. Microstructure and mechanical properties evolution of Ti-45Al-5Nb-0.3Y alloy by thermo-mechanical treatments. Acta Metall Sin, 2008, 44(6): 757-763 .

Download:  PDF(4091KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermo-mechanical treatments, through combined action of hot forging and heat treatment, were performed on a Ti-45Al-5Nb-0.3Y alloy to investigate their effect on the microstructure and mechanical properties of the alloy. As-forged Ti-45Al-5Nb-0.3Y alloy is comprised of a large number of dynamic recrystallization (DRX) γ grains, curved and broken lamellae, and a small amount of remnant lamellae. The DRX γ grain size reaches 1~2μm. The deformed regions contained lots of dislocations and a little deformation twinning. As-forged Ti-45Al-5Nb-0.3Y alloy presents better tensile properties in comparison to as-cast material at room temperature. The ultimate tensile strength of as-forged alloy is about 708.1MPa and the elongation is about 0.95%. The fine duplex (DP), near lamellar (NL) and fully lamellar (FL) microstructures are obtained by further heat treatment. These microstructures have better room temperature ductility. The DP microstructure with lamellar colony size of about 20µm and lamellar volume fraction of about 60% is obtained by 1320℃/30min/FC. The microstructure has the highest ductility of about 1.9% and ultimate tensile strength of about 658.9MPa, and shows the transgranular and intergranular cracks. The NL microstructure with lamellar colony size of about 60µm and lamellar volume fraction of about 95% is obtained by 1340℃/30min/FC. The microstructure has the ductility of about 1.75% and ultimate tensile strength of about 690.2MPa, and mainly shows the transgranular cracks. The FL microstructure with lamellar colony size of about 40µm is obtained by 1370℃/15min/FC. The microstructure has the ductility of about 1.5% and highest ultimate tensile strength of about 715.1MPa, and shows the transgranular cracks.
Key words:  TiAl alloy      thermo-mechanical treatment      microstructure      mechanical properties      phase transformation      
Received:  22 October 2007     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I6/757

[1]Ramanujan R V.Int Mater Rev,2000;45:217
[2]Chen Y Y,Kong F T.Acta Metall Sin,2002;38:1141 (陈玉勇,孔凡涛.金属学报,2002;38:1141)
[3]Edward A L.Intermetallics,2000;8:1339
[4]Clements H,Bartels A,Bystrzanowski S,Chladil H,Leit- her H,Dehm G,Gerling R,Schimansky F P.Inter- metallics,2006;14:1380
[5]Huang Z H.Trans Nonferrous Met Soc China,2003;13: 1325
[6]Maziasz P J,Liu C T.Metall Mater Trans,1998;29A:105
[7]Appel F,Oehring M,Paul J D H,Klinkenberg C,Cameiro T.lntermetallics,2004;12:791
[8]Tetsui T,Shindo K,Kobayashi S,Takeyama M.Scr Mater, 2002;47:399
[9]Tetsui T,Kobayashi S,Takeyama M.Intermetallics,2003; 11:299
[10]Bartels A,Kestler H,Clemens H.Mater Sci Eng,2002; A329-331:153
[11]Chen Y Y,Kong F T,Han J C,Chcn Z Y,Tian J.Inter- metallics,2005;13:263
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!