|
|
Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique |
LI Shujun( ), HOU Wentao, HAO Yulin, YANG Rui( ) |
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique. Acta Metall Sin, 2023, 59(4): 478-488.
|
Abstract Porous titanium alloys have been used for biomedical implants owing to their low-modulus matching with that of human bones and interconnecting pores with suitable size, which facilitates bone in-growth and satisfies the requirement of a successful implant. Recently, additive manufacturing (3D printing) has emerged as an excellent technology for manufacturing porous implants with accurate designed pore parameters and overcoming processing difficulties caused by high melting temperatures of metals. In this paper, the microstructure and mechanical properties of porous Ti-6Al-4V, commercial pure titanium (CP-Ti), and low-modulus Ti2448 alloys produced by 3D printing, obtained mainly by the authors' group, are reviewed. For Ti-6Al-4V, its fatigue properties are affected by the type of mesh struts and post processing. The better fatigue life of CP-Ti compared to that of Ti-6Al-4V derives from its superior ductility and the strain hardening effect caused by deformation twins. The excellent fatigue life of the low-modulus Ti2448 alloy results from its superelasticity and the high toughness, which increases the crack nucleation life and fatigue crack propagation life, respectively. Future directions of corrosion-fatigue properties of materials in complex physiological environments, surface biological functionalization, and porous material of new metallic alloy systems are discussed.
|
Received: 03 November 2022
|
|
Fund: National Natural Science Foundation of China(51871220);National Natural Science Foundation of China(U2241245);Key Research Program of Frontier Sciences, Chinese Academy of Sciences(QYZDJ-SSW-JSC031) |
Corresponding Authors:
LI Shujun, professor, Tel: (024)83978841, E-mail: shjli@imr.ac.cn;YANG Rui, professor, Tel: (024)23971512, E-mail: ryang@imr.ac.cn
|
1 |
Gibson L J. Cellular solids [J]. MRS Bull., 2003, 28: 270
doi: 10.1557/mrs2003.79
|
2 |
Head W C, Bauk D J, Emerson Jr R H. Titanium as the material of choice for cementless femoral components in total hip arthroplasty [J]. Clin. Orthop. Relat. Res., 1995, (311): 85
|
3 |
Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants [J]. Acta Biomater., 2007, 3: 997
pmid: 17532277
|
4 |
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 30
doi: 10.1016/j.jmbbm.2007.07.001
pmid: 19627769
|
5 |
Nune K C, Misra R D K, Gaytan S M, et al. Biological response of next-generation of 3D Ti-6Al-4V biomedical devices using additive manufacturing of cellular and functional mesh structures [J]. J. Biomater. Tiss. Eng., 2014, 4: 755
|
6 |
Banhart J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Prog. Mater. Sci., 2001, 46: 559
doi: 10.1016/S0079-6425(00)00002-5
|
7 |
Zhang L C, Liu Y J, Li S J, et al. Additive manufacturing of titanium alloys by electron beam melting: A review [J]. Adv. Eng. Mater., 2018, 20: 1700842
doi: 10.1002/adem.v20.5
|
8 |
Murr L E. Frontiers of 3D printing/additive manufacturing: From human organs to aircraft fabrication [J]. J. Mater. Sci. Technol., 2016, 32: 987
doi: 10.1016/j.jmst.2016.08.011
|
9 |
Narra S P, Cunningham R, Beuth J, et al. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V [J]. Addit. Manufact., 2018, 19: 160
|
10 |
Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
|
11 |
Cheng X Y, Li S J, Murr L E, et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2012, 16: 153
doi: 10.1016/j.jmbbm.2012.10.005
pmid: 23182384
|
12 |
Murr L E, Gaytan S M, Medina F, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays [J]. Philos. Trans. Roy. Soc., 2010, 368A: 1999
|
13 |
Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method [J]. Acta Biomater., 2014, 10: 4537
doi: 10.1016/j.actbio.2014.06.010
pmid: 24969664
|
14 |
Murr L E, Amato K N, Li S J, et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1396
doi: 10.1016/j.jmbbm.2011.05.010
pmid: 21783150
|
15 |
Hernández-Nava E, Smith C J, Derguti F, et al. The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing [J]. Acta Mater., 2015, 85: 387
doi: 10.1016/j.actamat.2014.10.058
|
16 |
Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM) [J]. J. Mech. Behav. Biomed. Mater., 2010, 3: 249
doi: 10.1016/j.jmbbm.2009.10.006
pmid: 20142109
|
17 |
Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals [J]. Prog. Mater. Sci., 2001, 46: 309
doi: 10.1016/S0079-6425(00)00016-5
|
18 |
Hollister S J. Porous scaffold design for tissue engineering [J]. Nat. Mater., 2005, 4: 518
doi: 10.1038/nmat1421
pmid: 16003400
|
19 |
Li S J, Zhao S, Hou W T, et al. Functionally graded Ti-6Al-4V meshes with high strength and energy absorption [J]. Adv. Eng. Mater., 2016, 18: 34
doi: 10.1002/adem.v18.1
|
20 |
Zhang S Z, Li C, Hou W T, et al. Longitudinal compression behavior of functionally graded Ti-6Al-4V meshes [J]. J. Mater. Sci. Technol., 2016, 32: 1098
doi: 10.1016/j.jmst.2016.02.008
|
21 |
Yuan W, Hou W T, Li S J, et al. Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2018, 34: 1127
doi: 10.1016/j.jmst.2017.12.003
|
22 |
Li S J, Murr L E, Cheng X Y, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting [J]. Acta Mater., 2012, 60: 793
doi: 10.1016/j.actamat.2011.10.051
|
23 |
Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd Ed., New York: Cambridge University Press, 1997: 453
|
24 |
Hedayati R, Hosseini-Toudeshky H, Sadighi M, et al. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials [J]. Int. J. Fatigue, 2016, 84: 67
doi: 10.1016/j.ijfatigue.2015.11.017
|
25 |
Li K, Gao X L, Subhash G. Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids [J]. Int. J. Solids Struct., 2005, 42: 1777
doi: 10.1016/j.ijsolstr.2004.08.005
|
26 |
Zhao S, Li S J, Hou W T, et al. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2016, 59: 251
doi: S1751-6161(16)00038-2
pmid: 26878293
|
27 |
Zargarian A, Esfahanian M, Kadkhodapour J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures [J]. Mater. Sci. Eng., 2016, C60: 339
|
28 |
Yavari S A, Ahmadi S M, Wauthle R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials [J]. J. Mech. Behav. Biomed. Mater., 2015, 43: 91
doi: 10.1016/j.jmbbm.2014.12.015
pmid: 25579495
|
29 |
Ahmadi S M, Hedayati R, Li Y, et al. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type [J]. Acta Biomater., 2018, 65: 292
doi: S1742-7061(17)30698-0
pmid: 29127065
|
30 |
Zhao S, Li S J, Wang S G, et al. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting [J]. Acta Mater., 2018, 150: 1
doi: 10.1016/j.actamat.2018.02.060
|
31 |
Wang Q S, Li S J, Hou W T, et al. Mechanistic understanding of compression-compression fatigue behavior of functionally graded Ti-6Al-4V mesh structure fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 103: 103590
doi: 10.1016/j.jmbbm.2019.103590
|
32 |
Dai D H, Gu D D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres [J]. Appl. Surf. Sci., 2015, 355: 310
doi: 10.1016/j.apsusc.2015.07.044
|
33 |
Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
doi: 10.1016/j.matdes.2015.12.135
|
34 |
Dallago M, Fontanari V, Torresani E, et al. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 381
doi: S1751-6161(17)30532-5
pmid: 29220822
|
35 |
Pyka G, Burakowski A, Kerckhofs G, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing [J]. Adv. Eng. Mater., 2012, 14: 363
doi: 10.1002/adem.201100344
|
36 |
Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting [J]. Addit. Manuf., 2020, 32: 101060
|
37 |
Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3: 277
pmid: 17234466
|
38 |
Wang H L, Hao Y L, He S Y, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
doi: 10.1016/j.actamat.2017.06.040
|
39 |
Wang W J, Gong D L, Wang H L, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy [J]. Acta Mater., 2022, 233: 117969
doi: 10.1016/j.actamat.2022.117969
|
40 |
Liu Y J, Li S J, Wang H L, et al. Electron beam melted beta-type Ti-24Nb-4Zr-8Sn porous structures with high strength-to-modulus ratio [J]. J. Mater. Sci. Technol., 2016, 32: 505
doi: 10.1016/j.jmst.2016.03.020
|
41 |
Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting [J]. Acta Mater., 2016, 113: 56
doi: 10.1016/j.actamat.2016.04.029
|
42 |
Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting [J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
|
43 |
Yang H X, Li S J, Hou W T, et al. Recoverable strain in a new biomedical Ti-24Nb-4Zr-8Sn alloy with cellular structure fabricated by electron beam melting [J]. Mater. Technol., 2020, 35: 881
doi: 10.1080/10667857.2019.1709287
|
44 |
Bai Y, Gai X, Li S J, et al. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline [J]. Corros. Sci., 2017, 123: 289
doi: 10.1016/j.corsci.2017.05.003
|
45 |
Gai X, Liu R, Bai Y, et al. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: The significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97: 272
doi: 10.1016/j.jmst.2021.05.024
|
46 |
Gai X, Bai Y, Li S J, et al. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid [J]. Acta Biomater., 2020, 106: 387
doi: S1742-7061(20)30086-6
pmid: 32058079
|
47 |
Gai X, Bai Y, Li S J, et al. In-situ monitoring of the electrochemical corrosion behavior in fluoride environment of cellular structured Ti6Al4V alloy fabricated by electron beam melting [J]. Corros. Sci., 2021, 181: 109258
doi: 10.1016/j.corsci.2021.109258
|
48 |
Cao H J, Feng L F, Wu Z X, et al. Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study [J]. Mater. Sci. Eng., 2017, C80: 7
|
49 |
Nune K C, Kumar A, Misra R D K, et al. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing [J]. Colloids Surf., 2017, 150B: 78
|
50 |
Nune K C, Misra R D K, Li S J, et al. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation [J]. J. Biomed. Mater. Res., 2016, 104A: 2488
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|