|
|
Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites |
CHEN Run, WANG Shuai( ), AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin |
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites. Acta Metall Sin, 2022, 58(11): 1478-1488.
|
Abstract To improve the comprehensive performance of Ti matrix composites for defense applications such as aviation and aerospace, as-sintered TiBw/TC18 composites with different reinforcement contents were hot extruded and heat-treated. The composites were characterized and analyzed by OM, SEM, and TEM. The mechanical properties of the composites were measured using an electronic universal testing machine. By extruding in the β single-phase region, the β grain size of TiBw/TC18 was reduced from 70 μm to about 40 μm. After the subsequent triple-annealing or solution aging heat treatment, α phase with different sizes was precipitated and distributed in the β phase. The elongation of the as-extruded composites significantly showed improvement, but the strength decreased by about 17%. After applying the triple-annealing heat treatment, the tensile strength and elongation of 2.0%TiBw/TC18 (volume fraction) reached 1200 MPa and 21.7%, which are higher by 5.5% and 189%, respectively, than those in the sintered state. Moreover, after applying the solution aging heat treatment, the as-extruded 2.0%TiBw/TC18 exhibited tensile strength and elongation of 1389 MPa and 9.9%, which are higher by 22.2% and 32%, respectively, than those exhibited by as-sintered 2.0%TiBw/TC18. Consequently, the hot extrusion can effectively reduce the grain size of as-sintered TiBw/TC18, and the tensile properties of the extruded TiBw/TC18 can be modified to meet the requirements of different service conditions through different subsequent heat treatments.
|
Received: 21 April 2022
|
|
Fund: National Key Research and Development Program of China(2021YFB3701203);National Natural Science Foundation of China(52171137);National Natural Science Foundation of China(52071116);Natural Science Foundation of Heilongjiang Province(TD2020E001);Heilongjiang Postdoctoral Fund(LBH-Z20058) |
About author: WANG Shuai, Tel: 13704505457, E-mail: wangshuai1993@hit.edu.cn
|
1 |
Zhang R, Wang D J, Huang L J, et al. Effects of heat treatment on microstructure and high temperature tensile properties of TiBw/TA15 composite billet with network architecture [J]. Mater. Sci. Eng., 2017, A679: 314
|
2 |
Wang S, An Q, Zhang R, et al. Microstructure characteristics and enhanced properties of network-structured TiB/(TA15-Si) composites via rolling deformation at different temperatures [J]. Mater. Sci. Eng., 2022, A829: 142176
|
3 |
Huang L J, Geng L. Progress on discontinuously reinforced titanium matrix composites [J]. J. Aeronaut. Mater., 2014, 34(04): 126
|
|
黄陆军, 耿 林. 非连续增强钛基复合材料研究进展 [J]. 航空材料学报, 2014, 34(04): 126
|
4 |
Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater. Sci. Eng., 2000, R29: 49
|
5 |
Ma Z Y, Tjong S C, Gen L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process [J]. Scr. Mater., 2000, 42: 367
doi: 10.1016/S1359-6462(99)00354-1
|
6 |
Patel V V, El-Desouky A, Garay J E, et al. Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: Effect of reinforcement particle size [J]. Mater. Sci. Eng., 2009, A507: 161
|
7 |
Panda K B, Ravi Chandran K S. Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties [J]. Metall. Mater. Trans., 2003, 34A: 1371
|
8 |
Huang L J, Geng L, Li A B, et al. In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing [J]. Scr. Mater., 2009, 60: 996
doi: 10.1016/j.scriptamat.2009.02.032
|
9 |
Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials [J]. J. Mech. Phys. Solids, 1963, 11: 127
doi: 10.1016/0022-5096(63)90060-7
|
10 |
Wang S, Huang L J, Jiang S, et al. Multiplied bending ductility and toughness of titanium matrix composites by laminated structure manipulation [J]. Mater. Des., 2021, 197: 109237
doi: 10.1016/j.matdes.2020.109237
|
11 |
Wei S L, Huang L J, Li X T, et al. Correction to: Network-strengthened Ti-6Al-4V/(TiC + TiB) composites: Powder metallurgy processing and enhanced tensile properties at elevated temperatures [J]. Metall. Mater. Trans., 2020, 51A: 1437
|
12 |
Zhang R, Huang L J, An Q, et al. The hyperbolic constitutive equations and modified dynamic material model of TiBw/Ti-6.5Al-2.5Zr-1Mo-1V-0.5Si composites [J]. Mater. Sci. Eng., 2019, A766: 138329
|
13 |
Jiao Y, Huang L J, Wei S L, et al. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance [J]. J. Mater. Sci. Technol., 2019, 35: 1532
doi: 10.1016/j.jmst.2019.04.001
|
14 |
Roy S, Suwas S, Tamirisakandala S, et al. Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B [J]. Acta Mater., 2011, 59: 5494
doi: 10.1016/j.actamat.2011.05.023
|
15 |
Sun S Y, Lu W J. Effects of trace reinforcements on microstructure and tensile properties of in-situ synthesized TC18 Ti matrix composite [J]. J. Compos. Mater., 2017, 51: 3623
doi: 10.1177/0021998317691343
|
16 |
Sen I, Ramamurty U. Elastic modulus of Ti-6Al-4V-xB alloys with B up to 0.55 wt.% [J]. Scr. Mater., 2010, 62: 37
doi: 10.1016/j.scriptamat.2009.09.022
|
17 |
Liu C M, Wang H M, Tian X J, et al. Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy [J]. Mater. Sci. Eng., 2013, A586: 323
|
18 |
Prithiv T S, Kloenne Z, Li D, et al. Grain boundary segregation and its implications regarding the formation of the grain boundary α phase in the metastable β-Titanium Ti-5Al-5Mo-5V-3Cr alloy [J]. Scr. Mater., 2022, 207: 114320
doi: 10.1016/j.scriptamat.2021.114320
|
19 |
Sun J F, Zhang Z W, Zhang M L, et al. Microstructure evolution and their effects on the mechanical properties of TB8 titanium alloy [J]. J. Alloys Compd., 2016, 663: 769
doi: 10.1016/j.jallcom.2015.12.152
|
20 |
Yao C F, Wu D X, Ma L F, et al. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy [J]. Appl. Surf. Sci., 2016, 387: 1257
doi: 10.1016/j.apsusc.2016.06.162
|
21 |
Chen R, An Q, Wang S, et al. Overcoming the strength-ductility trade-off dilemma in TiBw/TC18 composites via network architecture with trace reinforcement [J]. Mater. Sci. Eng., 2022, A842: 143092
|
22 |
Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
|
|
郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
|
23 |
Liu D K, Huang G S, Gong G L, et al. Influence of different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1306
doi: 10.1016/S1003-6326(17)60151-1
|
24 |
Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V Alloy [J]. Acta. Metall. Sin., 2021, 57: 1246
|
|
马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 [J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
|
25 |
Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5A1-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
|
刘仁慈, 王 震, 刘 冬 等. Ti-45.5A1-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
26 |
Wang B, Huang L J, Hu H T, et al. Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion [J]. Mater. Charact., 2015, 103: 140
doi: 10.1016/j.matchar.2015.03.029
|
27 |
Wang B, Huang L J, Geng L, et al. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites [J]. Mater. Des., 2015, 85: 679
doi: 10.1016/j.matdes.2015.07.058
|
28 |
Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
|
29 |
Guo X L, Wang L Q, Wang M M, et al. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites [J]. Acta Mater., 2012, 60: 2656
doi: 10.1016/j.actamat.2012.01.032
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|