|
|
Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites |
MA Guonan1,2, ZHU Shize1,2, WANG Dong1( ), XIAO Bolv1, MA Zongyi1 |
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites. Acta Metall Sin, 2023, 59(12): 1655-1664.
|
Abstract Particulate reinforced aluminum matrix composites are widely used in various industrial fields owing to their high specific strength and modulus, low coefficient of thermal expansion, etc. In general, because stronger matrix alloys tend to produce stronger composites, composites with high-strength Al-Zn-Mg-Cu alloys as the matrix are paid considerable attention. However, the aging behavior of the SiC/Al-Zn-Mg-Cu composites has not been well understood. In the present work, SiC particles with a volume fraction of 15% reinforced Al-7.5Zn-2.8Mg-1.7Cu (mass fraction, %) composite and corresponding unreinforced alloy were fabricated using the powder metallurgy technique. The effects of the aging time on the hardness, electrical conductivity, and mechanical properties of the composite and corresponding matrix alloy were investigated. The T6 heat treatment process suitable for the composite was proposed. The nanoscale precipitates under different aging conditions were quantitatively analyzed using TEM and HRTEM. The results indicated that the SiC particles exhibited an obvious promoting effect on the aging process of the SiC/Al-Zn-Mg-Cu composite. The composite reached the corresponding maximum hardness 14 h earlier than the unreinforced alloy. The maximum hardness (238 HV) of the composite was 29 HV higher than that of the unreinforced alloy. The width of the precipitation-free zone of the composite was similar to that of the unreinforced alloy, but the number of the grain boundary phases in the composite increased. The formation of the grain boundary phases and interfacial reaction products could consume alloying elements and reduce the density of precipitated phases in the composite. Based on HRTEM, SiC particles did not change the aging precipitation sequence (SSS-GP zone-η'-η) of the Al-Zn-Mg-Cu alloy, and the η' phase was the major strengthening phase of the T6-treated SiC/Al-Zn-Mg-Cu composites.
|
Received: 01 November 2021
|
|
Fund: National Key Research and Development Program of China(2017YFB0703104);National Natural Science Foundation of China(51771193);Liaoning Revitalization Talents Program(XLYC2007009) |
1 |
Ma K, Zhang X X, Wang D, et al. Optimization and simulation of deformation parameters of SiC/2009Al composites[J]. Acta Metall. Sin., 2019, 55: 1329
doi: 10.11900/0412.1961.2019.00020
|
|
马 凯, 张星星, 王 东 等. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55: 1329
|
2 |
Xiao B L, Liu Z Y, Zhang X X, et al. Metal matrix composites for future application[J]. Mater. China, 2016, 35: 666
|
|
肖伯律, 刘振宇, 张星星 等. 面向未来应用的金属基复合材料[J]. 中国材料进展, 2016, 35: 666
|
3 |
Li B, Luo B H, He K J, et al. Effect of aging on interface characteristics of Al-Mg-Si/SiC composites[J]. J. Alloys Compd., 2015, 649: 495
doi: 10.1016/j.jallcom.2015.07.033
|
4 |
Monazzah A H, Pouraliakbar H, Bagheri R, et al. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms[J]. Composites, 2017, 125B: 49
|
5 |
Tong P, Lin L, Wang Q Z, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Mater. Composit. Sin., 2019, 36: 927
|
|
童 攀, 林 立, 王全兆 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36: 927
|
6 |
Jin P, Xiao B L, Wang Q Z, et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites[J]. Mater. Sci. Eng., 2011, A528: 1504
|
7 |
Wen K, Xiong B Q, Zhang Y A, et al. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2018, A716: 42
|
8 |
Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites[J]. Mater. Sci. Eng., 2019, A767: 138422
|
9 |
Dasgupta R, Meenai H. SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy[J]. Mater. Charact., 2005, 54: 438
doi: 10.1016/j.matchar.2005.01.012
|
10 |
Kumar N V R, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites[J]. Composites, 2000, 31A: 1139
|
11 |
Manoharan M, Lewandowski J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Mater. Sci. Eng., 1992, A150: 179
|
12 |
Wang F F, Meng W, Zhang H W, et al. Effects of under-aging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy[J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1920
doi: 10.1016/S1003-6326(18)64837-X
|
13 |
Li L, Wei L J, Xu Y J, et al. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2019, A742: 102
|
14 |
Chen Z G, Yuan Z G, Ren J K. The mechanism of comprehensive properties enhancement in Al-Zn-Mg-Cu alloy via novel thermomechanical treatment[J]. J. Alloys Compd., 2020, 828: 154446
doi: 10.1016/j.jallcom.2020.154446
|
15 |
Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
|
16 |
Chemingui M, Khitouni M, Jozwiak K, et al. Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70° and 135oC[J]. Mater. Des., 2010, 31: 3134
doi: 10.1016/j.matdes.2009.12.033
|
17 |
Alarcon O E, Nazar A M M, Monteiro W A. The effect of microstructure on the mechanical behavior and fracture mechanism in a 7050-T76 aluminum alloy[J]. Mater. Sci. Eng., 1991, A138: 275
|
18 |
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites[J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
|
19 |
Song J Y, Guo Q, Ouyang Q B, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites[J]. Mater. Sci. Eng., 2015, A644: 79
|
20 |
Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metall. Sin., 2019, 55: 1319
doi: 10.11900/0412.1961.2018.00523
|
|
马国楠, 王 东, 刘振宇 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55: 1319
doi: 10.11900/0412.1961.2018.00523
|
21 |
Huang Z Y, Zhang X X, Yang C, et al. Abnormal deformation behavior and particle distribution during hot compression of fine-grained 14vol%SiCp/2014Al composite[J]. J. Alloys Compd., 2018, 743: 87
doi: 10.1016/j.jallcom.2018.01.397
|
22 |
Ma G N, Wang D, Xiao B L, et al. Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites[J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1447
doi: 10.1007/s40195-021-01254-w
|
23 |
Wang X D, Pan Q L, Liu L L, et al. Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al-Zn-Mg-Cu alloy[J]. Mater. Charact., 2018, 144: 131
doi: 10.1016/j.matchar.2018.07.012
|
24 |
Li J J, Ju J, Zhang Z, et al. Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment[J]. Mater. Charact., 2021, 172: 110827
doi: 10.1016/j.matchar.2020.110827
|
25 |
Lai Y X, Fan W, Yin M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys[J]. J. Mater. Sci. Technol., 2020, 41: 127
doi: 10.1016/j.jmst.2019.11.001
|
26 |
Shu W X, Hou L G, Zhang C, et al. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys[J]. Mater. Sci. Eng., 2016, A657: 269
|
27 |
Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050[J]. Mater. Sci. Eng., 2008, 492: 1
doi: 10.1016/j.msea.2008.02.039
|
28 |
Wu C D, Ma K K, Zhang D L, et al. Precipitation phenomena in Al-Zn-Mg alloy matrix composites reinforced with B4C particles[J]. Sci. Rep., 2017, 7: 9589
doi: 10.1038/s41598-017-10291-4
|
29 |
Wu L M, Seyring M, Rettenmayr M, et al. Characterization of precipitate evolution in an artificially aged Al-Zn-Mg-Sc-Zr alloy[J]. Mater. Sci. Eng., 2010, A527: 1068
|
30 |
Li H C, Cao F Y, Guo S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys[J]. J. Alloys Compd., 2017, 719: 89
doi: 10.1016/j.jallcom.2017.05.101
|
31 |
Zhao J G, Liu Z Y, Bai S, et al. Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al-Zn-Mg-Cu alloy[J]. J. Alloys Compd., 2020, 829: 154469
doi: 10.1016/j.jallcom.2020.154469
|
32 |
Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites[J]. Mater. Sci. Eng., 2018, A711: 643
|
33 |
Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15vol%SiCp/2009Al composites fabricated by hot isostatic pres-sing and hot extrusion processes[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
|
34 |
Hong Y, Wang W J, Liu J Q, et al. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC[J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 941
doi: 10.1016/S1003-6326(19)65003-X
|
35 |
Wen K, Fan Y Q, Wang G J, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Mater. Des., 2016, 101: 16
doi: 10.1016/j.matdes.2016.03.150
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|