Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites
MA Guonan1,2, ZHU Shize1,2, WANG Dong1(), XIAO Bolv1, MA Zongyi1
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article:
MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites. Acta Metall Sin, 2023, 59(12): 1655-1664.
Particulate reinforced aluminum matrix composites are widely used in various industrial fields owing to their high specific strength and modulus, low coefficient of thermal expansion, etc. In general, because stronger matrix alloys tend to produce stronger composites, composites with high-strength Al-Zn-Mg-Cu alloys as the matrix are paid considerable attention. However, the aging behavior of the SiC/Al-Zn-Mg-Cu composites has not been well understood. In the present work, SiC particles with a volume fraction of 15% reinforced Al-7.5Zn-2.8Mg-1.7Cu (mass fraction, %) composite and corresponding unreinforced alloy were fabricated using the powder metallurgy technique. The effects of the aging time on the hardness, electrical conductivity, and mechanical properties of the composite and corresponding matrix alloy were investigated. The T6 heat treatment process suitable for the composite was proposed. The nanoscale precipitates under different aging conditions were quantitatively analyzed using TEM and HRTEM. The results indicated that the SiC particles exhibited an obvious promoting effect on the aging process of the SiC/Al-Zn-Mg-Cu composite. The composite reached the corresponding maximum hardness 14 h earlier than the unreinforced alloy. The maximum hardness (238 HV) of the composite was 29 HV higher than that of the unreinforced alloy. The width of the precipitation-free zone of the composite was similar to that of the unreinforced alloy, but the number of the grain boundary phases in the composite increased. The formation of the grain boundary phases and interfacial reaction products could consume alloying elements and reduce the density of precipitated phases in the composite. Based on HRTEM, SiC particles did not change the aging precipitation sequence (SSS-GP zone-η'-η) of the Al-Zn-Mg-Cu alloy, and the η' phase was the major strengthening phase of the T6-treated SiC/Al-Zn-Mg-Cu composites.
Fund: National Key Research and Development Program of China(2017YFB0703104);National Natural Science Foundation of China(51771193);Liaoning Revitalization Talents Program(XLYC2007009)
Fig.1 OM images (a, b) and grain size statistic plots (c, d) of as-extruded Al-7.5Zn-2.8Mg-1.7Cu alloy (a, c) and SiC/Al-7.5Zn-2.8Mg-1.7Cu composite (b, d)
Fig.2 Aging hardness and electrical conductivity curves of the single-stage aged Al-7.5Zn-2.8Mg-1.7Cu alloy (a) and SiC/Al-7.5Zn-2.8Mg-1.7Cu composite (b) at 120oC (IACS—international annealed copper standard)
Fig.3 Tensile properties of Al-7.5Zn-2.8Mg-1.7Cu alloy (a) and SiC/Al-7.5Zn-2.8Mg-1.7Cu composite (b) aged at 120oC for 0, 2, 8, 10, 24, and 48 h (UTS—ultimate tensile strength, YS—yield strength, EL—elongation)
Fig.4 Precipitation morphologies (a-c) and size statistic plots (d-f) of Al-7.5Zn-2.8Mg-1.7Cu alloy under different aging treatment conditions taken along [110]Al zone axis (a, d) under-aged (120oC, 2 h) (b, e) under-aged (120oC, 10 h) (c, f) T6-treated (120oC, 24 h)
Fig.5 Precipitation morphologies (a-c) and size statistic plots (d-f) of SiC/Al-7.5Zn-2.8Mg-1.7Cu composite under different aging treatment conditions taken along [110]Al zone axis (a, d) under-aged (120oC, 2 h) (b, e) under-aged (120oC, 10 h) (c, f) T6-treated (120oC, 24 h)
Fig.6 DSC curves of the solution treated (470oC, 2 h) unreinforced alloy and composite
Peak
Unreinforced alloy
Composite
1
79
79
2
172
-
3
224
218
4
243
240
5
262
262
6
450
438
Table 1 Temperatures of peak points (in Fig.6) in the DSC curves of the solution treated unreinforced alloy and composite
Fig.7 HRTEM images (a-c) of the precipitation in the T6 treated composite taken along [110]Al zone axis, and the fast Fourier transformation (FFT) patterns (d-h) of the marked zone in the HRTEM images in Figs.7a-c
Fig.8 Bright-field TEM images of grain boundaries of the unreinforced alloy (a, b) and the composite (c, d) (a, c) aging 2 h at 120oC (b, d) T6-treated (120oC, 24 h)
1
Ma K, Zhang X X, Wang D, et al. Optimization and simulation of deformation parameters of SiC/2009Al composites[J]. Acta Metall. Sin., 2019, 55: 1329
doi: 10.11900/0412.1961.2019.00020
Li B, Luo B H, He K J, et al. Effect of aging on interface characteristics of Al-Mg-Si/SiC composites[J]. J. Alloys Compd., 2015, 649: 495
doi: 10.1016/j.jallcom.2015.07.033
Tong P, Lin L, Wang Q Z, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Mater. Composit. Sin., 2019, 36: 927
Jin P, Xiao B L, Wang Q Z, et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites[J]. Mater. Sci. Eng., 2011, A528: 1504
7
Wen K, Xiong B Q, Zhang Y A, et al. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2018, A716: 42
8
Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites[J]. Mater. Sci. Eng., 2019, A767: 138422
9
Dasgupta R, Meenai H. SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy[J]. Mater. Charact., 2005, 54: 438
doi: 10.1016/j.matchar.2005.01.012
10
Kumar N V R, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites[J]. Composites, 2000, 31A: 1139
11
Manoharan M, Lewandowski J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Mater. Sci. Eng., 1992, A150: 179
12
Wang F F, Meng W, Zhang H W, et al. Effects of under-aging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy[J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1920
doi: 10.1016/S1003-6326(18)64837-X
13
Li L, Wei L J, Xu Y J, et al. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2019, A742: 102
14
Chen Z G, Yuan Z G, Ren J K. The mechanism of comprehensive properties enhancement in Al-Zn-Mg-Cu alloy via novel thermomechanical treatment[J]. J. Alloys Compd., 2020, 828: 154446
doi: 10.1016/j.jallcom.2020.154446
15
Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
16
Chemingui M, Khitouni M, Jozwiak K, et al. Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70° and 135oC[J]. Mater. Des., 2010, 31: 3134
doi: 10.1016/j.matdes.2009.12.033
17
Alarcon O E, Nazar A M M, Monteiro W A. The effect of microstructure on the mechanical behavior and fracture mechanism in a 7050-T76 aluminum alloy[J]. Mater. Sci. Eng., 1991, A138: 275
18
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites[J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
19
Song J Y, Guo Q, Ouyang Q B, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites[J]. Mater. Sci. Eng., 2015, A644: 79
20
Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metall. Sin., 2019, 55: 1319
doi: 10.11900/0412.1961.2018.00523
Huang Z Y, Zhang X X, Yang C, et al. Abnormal deformation behavior and particle distribution during hot compression of fine-grained 14vol%SiCp/2014Al composite[J]. J. Alloys Compd., 2018, 743: 87
doi: 10.1016/j.jallcom.2018.01.397
22
Ma G N, Wang D, Xiao B L, et al. Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites[J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1447
doi: 10.1007/s40195-021-01254-w
23
Wang X D, Pan Q L, Liu L L, et al. Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al-Zn-Mg-Cu alloy[J]. Mater. Charact., 2018, 144: 131
doi: 10.1016/j.matchar.2018.07.012
24
Li J J, Ju J, Zhang Z, et al. Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment[J]. Mater. Charact., 2021, 172: 110827
doi: 10.1016/j.matchar.2020.110827
25
Lai Y X, Fan W, Yin M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys[J]. J. Mater. Sci. Technol., 2020, 41: 127
doi: 10.1016/j.jmst.2019.11.001
26
Shu W X, Hou L G, Zhang C, et al. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys[J]. Mater. Sci. Eng., 2016, A657: 269
27
Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050[J]. Mater. Sci. Eng., 2008, 492: 1
doi: 10.1016/j.msea.2008.02.039
28
Wu C D, Ma K K, Zhang D L, et al. Precipitation phenomena in Al-Zn-Mg alloy matrix composites reinforced with B4C particles[J]. Sci. Rep., 2017, 7: 9589
doi: 10.1038/s41598-017-10291-4
29
Wu L M, Seyring M, Rettenmayr M, et al. Characterization of precipitate evolution in an artificially aged Al-Zn-Mg-Sc-Zr alloy[J]. Mater. Sci. Eng., 2010, A527: 1068
30
Li H C, Cao F Y, Guo S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys[J]. J. Alloys Compd., 2017, 719: 89
doi: 10.1016/j.jallcom.2017.05.101
31
Zhao J G, Liu Z Y, Bai S, et al. Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al-Zn-Mg-Cu alloy[J]. J. Alloys Compd., 2020, 829: 154469
doi: 10.1016/j.jallcom.2020.154469
32
Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites[J]. Mater. Sci. Eng., 2018, A711: 643
33
Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15vol%SiCp/2009Al composites fabricated by hot isostatic pres-sing and hot extrusion processes[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
34
Hong Y, Wang W J, Liu J Q, et al. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC[J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 941
doi: 10.1016/S1003-6326(19)65003-X
35
Wen K, Fan Y Q, Wang G J, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Mater. Des., 2016, 101: 16
doi: 10.1016/j.matdes.2016.03.150