Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (12): 1644-1654    DOI: 10.11900/0412.1961.2022.00237
Current Issue | Archive | Adv Search |
Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution
HU Wenbin, ZHANG Xiaowen, SONG Longfei(), LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng()
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Cite this article: 

HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution. Acta Metall Sin, 2023, 59(12): 1644-1654.

Download:  HTML  PDF(4440KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Several high-entropy alloys (HEAs), such as single-phase bcc HEA with high strength and fcc with high ductility have been developed over the past few decades. Eutectic HEA (EHEA), such as AlCoCrFeNi2.1, consists of both fcc and bcc microstructure, imparting excellent mechanical properties. The recent research on AlCoCrFeNi2.1 EHEA primarily focuses on its mechanical properties. However, corrosion resistance of AlCoCrFeNi2.1 EHEA is rarely discussed, which is crucial for the application of new materials. This work investigates the corrosion behavior of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solutions using electrochemical evaluation, SEM, EDS, and XPS. The results indicate that Cl- do not alter the semiconductor type of passive film on AlCoCrFeNi2.1 EHEA, but they considerably affect the compactness. Cl- change passive film properties by influencing the Al and Cr oxide contents; however, Ni is not affected by Cl-. The Ni-Al-rich phase is preferentially dissolved in 0.05 mol/L H2SO4 solution, and pitting corrosion and selective dissolution occur in 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution.

Key words:  eutectic high-entropy alloy      localized corrosion      passivation     
Received:  12 May 2022     
ZTFLH:  TG178  
Fund: Guang Dong Basic and Applied Basic Research Foundation(2021A1515110560)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00237     OR     https://www.ams.org.cn/EN/Y2023/V59/I12/1644

Fig.1  Microstructure of AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA)
Fig.2  Cyclic polarization curves of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 solution and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (E—potential, i—current density)
SolutionEcorr / mVicorr / (μA·cm-2)Eb / mVipass / (μA·cm-2)
0.05 mol·L-1 H2SO4-33959.0127784.990
0.05 mol·L-1 H2SO4 + 0.02 mol·L-1 NaCl-36067.3874715.048
Table 1  Electrochemical parameters of AlCoCrFeNi2.1 EHEA
Fig.3  Nyquist plots (a) and Bode plots (b) of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 solut-ion and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (Inset in Fig.3a shows the electrical equivalent circuit of EIS. Rs—solution resistance, Qdl—electrochemical response parameter of double electric layers, Rctthe charge transfer resistance, L—inductance of adsorption species, RL—inductance resistance)
SolutionRs / (Ω·cm2)Qdl / (Ω-1·cm-2·s n )nRct / (Ω·cm2)L / (H·cm2)RL / (Ω·cm2)
0.05 mol·L-1 H2SO413.009.8442 × 10-50.8739308.5120.867.22
0.05 mol·L-1 H2SO4 + 0.02 mol·L-1 NaCl17.621.6432 × 10-40.8858271.318.037.70
Table 2  Fitted electrochemical parameters for EIS of AlCoCrFeNi2.1 EHEA
Fig.4  Potentiostatic polarization curves of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 solution and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution at 0.1 V (vs SCE) (a) and 0.2 V (vs SCE) (b) (Insets show the partial enlargement of potentiostatic polarization curves)
Fig.5  Mott-Schottky (M-S) plots for AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 solution and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (C-2—space charge capacitance)
SolutionE / VNA / (1022 cm-3)ND / (1021 cm-3)Efb / V
0.05 mol·L-1 H2SO40.11.88.6-0.53
0.21.56.9-0.65
0.05 mol·L-1 H2SO4 + 0.02 mol·L-1 NaCl0.11.410.0-0.50
0.21.17.4-0.77
Table 3  Acceptor densities and donor densities for AlCoCrFeNi2.1 EHEA after potentiostatic polarization for 2 h at different potentials
Fig.6  SEM images of AlCoCrFeNi2.1 EHEA after immersion in 0.05 mol/L H2SO4 solution (a) and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (b) for 25 d
Fig.7  EDS element mappings of AlCoCrFeNi2.1 EHEA after immersion in 0.05 mol/L H2SO4 solution (a) and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (b) for 25 d
Fig.8  High resolution XPS spectra of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 solution (a1-e1) and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (a2-e2) after potentiostatic polarization at 0.2 V (vs SCE) for 2 h (%—peak area percentage)
(a1, a2) Al2p (b1, b2) Co2p3/2 (c1, c2) Cr2p3/2 (d1, d2) Fe2p3/2 (e1, e2) Ni2p3/2
Fig.9  Schematics of localized corrosion mechanism of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 solution (a1-a3) and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution (b1-b3)
(a1, b1) before corrosion
(a2, b2) the form of metastable pitting
(a3, b3) selective corrosion (a3) and the form of stable pitting (b3)
1 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure[J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
2 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
3 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data[J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
4 Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
5 Wang H, Liu P, Chen X H, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy[J]. J. Alloys Compd., 2022, 906: 163947
doi: 10.1016/j.jallcom.2022.163947
6 Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J]. Corros. Sci., 2020, 177: 108954
doi: 10.1016/j.corsci.2020.108954
7 Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J]. Corros. Sci., 2020, 163: 108287
doi: 10.1016/j.corsci.2019.108287
8 Shi Y Z, Yang B, Xie X, et al. Corrosion of Alx CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
9 Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654
doi: 10.1016/j.intermet.2019.106654
10 Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19: 288
doi: 10.1016/j.intermet.2010.10.008
11 Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
doi: 10.1016/j.intermet.2017.09.001
12 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
doi: 10.1016/j.matdes.2018.01.025
13 He F, Wang Z J, Ai C, et al. Grouping strategy in eutectic multi-principal-component alloy[J]. Mater. Chem. Phys., 2019, 221: 138
doi: 10.1016/j.matchemphys.2018.09.044
14 Peng P, Li S Y, Chen W Q, et al. Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Alloys Compd., 2022, 898: 162907
doi: 10.1016/j.jallcom.2021.162907
15 Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing[J]. Mater. Sci. Eng., 2022, A830: 142327
16 Sun Y P, Wang Z, Yang H J, et al. Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys[J]. J. Alloys Compd., 2020, 842: 155825
doi: 10.1016/j.jallcom.2020.155825
17 Trueba M, Trasatti S P. Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
doi: 10.1016/j.matchemphys.2010.02.022
18 Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
19 Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corros. Sci., 2010, 52: 2571
doi: 10.1016/j.corsci.2010.04.004
20 Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions[J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
21 Umoren S A, Li Y, Wang F H, et al. Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions[J]. Corros. Sci., 2010, 52: 1777
doi: 10.1016/j.corsci.2010.01.026
22 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Alx CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corros. Sci., 2008, 50: 2053
doi: 10.1016/j.corsci.2008.04.011
23 Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Alx CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corros. Sci., 2010, 52: 1026
doi: 10.1016/j.corsci.2009.11.028
24 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
25 BenSalah M, Sabot R, Triki E, et al. Passivity of Sanicro28 (UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis[J]. Corros. Sci., 2014, 86: 61
doi: 10.1016/j.corsci.2014.04.056
26 Mert B D, Yüce A O, Kardaş G, et al. Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: Experimental and theoretical investigation[J]. Corros. Sci., 2014, 85: 287
doi: 10.1016/j.corsci.2014.04.032
27 Wang Z, Zhang G H, Fan X H, et al. Corrosion behavior and surface characterization of an equiatomic CoCrFeMoNi high-entropy alloy under various pH conditions[J]. J. Alloys Compd., 2022, 900: 163432
doi: 10.1016/j.jallcom.2021.163432
28 Dai C D, Luo H, Li J, et al. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid[J]. Appl. Surf. Sci., 2020, 499: 143903
doi: 10.1016/j.apsusc.2019.143903
29 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions[J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
30 Jiang R J, Chen C F, Zheng S Q. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films[J]. Electrochim. Acta, 2010, 55: 2498
doi: 10.1016/j.electacta.2009.11.093
31 Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution[J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
32 Kong D C, Xu A N, Dong C F, et al. Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions[J]. Corros. Sci., 2017, 116: 34
doi: 10.1016/j.corsci.2016.12.010
33 Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS[J]. Corros. Sci., 2020, 167: 108507
doi: 10.1016/j.corsci.2020.108507
34 Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing temperature on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution[J]. Mater. Chem. Phys., 2022, 279: 125725
doi: 10.1016/j.matchemphys.2022.125725
35 Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Alx CoCrFeNi high entropy alloys[J]. Mater. Chem. Phys., 2021, 273: 124937
doi: 10.1016/j.matchemphys.2021.124937
36 Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy[J]. J. Electroanal. Chem., 2019, 848: 113331
doi: 10.1016/j.jelechem.2019.113331
37 Wang P J, Ma L W, Cheng Q X, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review[J]. Int. J. Miner., Metall. Mater., 2021, 28: 1112
38 Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
39 Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content[J]. Corros. Sci., 2004, 46: 2681
doi: 10.1016/j.corsci.2004.03.013
40 Hsu K M, Chen S H, Lin C S. Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4 [J]. Corros. Sci., 2021, 190: 109694
doi: 10.1016/j.corsci.2021.109694
41 Qi W, Wang W R, Yang X, et al. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy[J]. J. Mater. Sci. Technol., 2022, 109: 76
doi: 10.1016/j.jmst.2021.08.062
42 Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12: 694
doi: 10.3390/ma12050694
43 Liu J, Zhang T, Meng G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation[J]. Corros. Sci., 2015, 91: 232
doi: 10.1016/j.corsci.2014.11.018
[1] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[2] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[3] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[4] Lining XU,Jinyang ZHU,Bei WANG. Influence of Cr Content and pH Value on the Semi-Passivation Behavior of Low Cr Pipeline Steels[J]. 金属学报, 2017, 53(6): 677-683.
[5] Yao WANG,Chunfu LI,Yuanhua LIN. Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy[J]. 金属学报, 2017, 53(5): 622-630.
[6] ZHONG Xiaocong, JIANG Liangxing, LÜ Xiaojun, LAI Yanqing, LI Jie, LIU Yexiang. EFFECTS OF CHLORIDE ION ON THE ELECTRO- CHEMICAL BEHAVIOR OF Pb-Ag-RE ALLOY ANODE[J]. 金属学报, 2015, 51(3): 378-384.
[7] WANG Yong, ZHENG Yugui, WANG Jianqiang, LI Meiling, SHEN Jun. PASSIVATION BEHAVIOR OF Fe-BASED AMORPHOUS METALLIC COATING IN NaCl AND H2SO4 SOLUTIONS[J]. 金属学报, 2015, 51(1): 49-56.
[8] LIU Li, LI Ying, WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION[J]. 金属学报, 2014, 50(2): 212-218.
[9] HAN Xiao, CHEN Ji, SUN Cheng, WU Zhanwen, WU Xinchun, ZHANG Xinghang. CORROSION AND PASSIVE PROPERTIES OF BULKULTRAFINE-GRAINED 304L STAINLESS STEEL[J]. 金属学报, 2013, 49(3): 265-270.
[10] YANG Hongying PAN Haodan TONG Linlin LIU Yuanyuan. FORMATION PROCESS OF BIOLOGICAL OXIDE FILM ON CHALCOPYRITE CRYSTAL SURFACE[J]. 金属学报, 2012, 48(9): 1145-1152.
[11] WANG Yanqiu, SHAO Yawei, MENG Guozhe, ZHANG Tao,WANG Fuhui. STUDY ON PASSIVATING TREATMENT OF Cu-Ni ALLOY IN COMPOUND PASSIVANT CONTAINING BENZOTRIAZOLE[J]. 金属学报, 2012, 48(6): 744-748.
[12] ZHU Xuemei CAO Xuemei LIU Ming LEI Mingkai ZHANG Yansheng. AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE[J]. 金属学报, 2012, 48(11): 1357-1364.
[13] SHI Jinjie SUN Wei GENG Guoqing. CORROSION RESISTANCES OF PASSIVE FILMS ON LOW-CARBON REBAR AND FINE-GRAINED REBAR IN ALKALINE MEDIA[J]. 金属学报, 2011, 47(4): 449-454.
[14] XU Liang TANG Junlei ZUO Yu. ELECTROPLATING OF Cr-Pd ALLOY ON 316L STAINLESS STEEL AND ITS CORROSION RESISFANCE IN THE STRONG REDUCING MEDIUMS[J]. 金属学报, 2011, 47(2): 209-213.
[15] SHI Yongjuan REN Yibin ZHANG Bingchun YANG Ke. THE EFFECT OF PASSIVATION ON THE HAEMOCOMPATIBILITY OF 316L STAINLESS STEEL[J]. 金属学报, 2011, 47(12): 1575-1580.
No Suggested Reading articles found!