Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 693-702    DOI: 10.11900/0412.1961.2021.00586
Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing
XU Lei1(), TIAN Xiaosheng1,2, WU Jie1, LU Zhengguan1, YANG Rui1
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing. Acta Metall Sin, 2023, 59(5): 693-702.

Download:  HTML  PDF(2872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inconel 718 alloy, with outstanding high-temperature resistance and mechanical properties, has been widely used in aviation fields. However, large and complex structural components are difficult to produce by traditional processes, which may lead to segregation, micropores, and Laves phases. Net-shape hot isostatic pressing (HIP) is a powder metallurgy processing technology that produces near-shape or net-shape components with the desired microstructures, properties, and cost effectiveness. In this study, Inconel 718 pre-alloyed powder was prepared using the electrode induction melting gas atomization technique, and then the pre-alloyed powder was characterized. Powder compacts were prepared by the HIP of the pre-alloyed powder, and their mechanical properties were tested. Although clean, high-quality powder can be obtained from Inconel 718 alloy due to its lower chemical reactivity compared to titanium alloys, carbide-forming elements diffuse to the powder surface during HIP. These form a hard film with the original oxide particles as nuclei, consisting of Ni3Nb and carbides of Ti and Nb. These films become prior particle boundaries (PPBs) in the obtained powder metallurgy Inconel 718 alloy, resulting in lower ductility, toughness, and stress rupture life than those of the wrought version of the alloy. Suppressing the formation of the PPBs during HIP or eliminating them via subsequent processing significantly improves the comprehensive mechanical properties of the material.

Key words:  Inconel 718 alloy      powder metallurgy      hot isostatic pressing      prior particle boundary     
Received:  28 December 2021     
ZTFLH:  TG132.32  
Fund: National Science and Technology Major Project of China(J2019-VII-0005-0145);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010102);CAS Project for Yo-ung Scientists in Basic Research(YSBR-025)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00586     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/693

Fig.1  Geometric dimensions of special-shaped cylindrical capsule (unit: mm)
Fig.2  Differential size distributions of Inconel 718 pre-alloyed powders (D10, D50, and D90 indicate 10%, 50%, and 90% cumulative particle sizes, respectively)
Fig.3  XRD spectrum of Inconel 718 pre-alloyed powders
Fig.4  SEM images of Inconel 718 pre-alloyed powders in full view (a) and high-magnification of Fig.4a (b)
Fig.5  Powder metallurgical (PM) Inconel 718 component partial photo (a) and room temperature tensile fracture (Inset shows the magnified image) (b)
SampleTemperatureTensile propertyImpact propertyStress rupture life
UTS / MPaYS / MPaEl / %Z / %Jh
Wrought[19]RT1275-14001030-116712-2115.030-
ComponentRT127310864.54.08-
Test barRT1321104415.013.035-
Wrought[19]650oC1000-1200860-100012-1915.0-≥ 25
Component650oC11649274.04.0-26
Test bar650oC118099713.019.0-37
Table 1  Mechanical properties of PM Inconel 718 component and test bars
Fig.6  Simulation results of relative density of Inconel 718 powder alloy at different locations of special-shaped cylindrical capsule
Fig.7  Tensile properties of PM Inconel 718 alloys at room temperature (a) and 650oC (b)
Fig.8  Industrial computerized tomography (CT) (a) and Micro-CT (b) analyses of PM Inconel 718 alloys
Fig.9  Microstructures of Inconel 718 component (White dotted circles represent prior particle boundaries (PPBs)) (a), and test bars (b) and high magnification morphology of PPBs (c), and the EDS analyses of PPBs (d, e)
PointPhaseCAlTiCrFeNiNbO
1MC14.270.1011.116.185.0612.2950.99-
2δ6.670.8810.3316.1414.2135.8114.970.99
Table 2  EDS results at the prior particle boundaries of Inconel 718 parts
Fig.10  SEM fractographs of component (a) and SEM image of longitudinal sections near the fractures of tensile samples (b)
Fig.11  Relationships between the proportion of PPBs area and the mechanical properties of the alloys from various PM Inconel 718 powders
Fig.12  Microstructures of PM Inconel 718 alloys with particle sizes of fine (a) and coarse (b) (Insets show the particle size distributions of the powder used)
Fig.13  Microstructures of PM Inconel 718 alloys (HIP—hot isostatic pressing)
(a) HIPed (b) re-HIPed
1 Chamanfar A, Sarrat L, Jahazi M, et al. Microstructural characteristics of forged and heat treated Inconel-718 disks[J]. Mater. Des., 2013, 52: 791
doi: 10.1016/j.matdes.2013.06.004
2 Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy[J]. Mater. Sci. Eng., 2011, A530: 525
3 Baccino R, Moret F, Pellerin F, et al. High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process[J]. Mater. Des., 2000, 21: 345
doi: 10.1016/S0261-3069(99)00093-X
4 Samarov V, Seliverstov D, Froes F H. Fabrication of near-net shape cost-effective titanium components by use of prealloyed powder and hot isostatic pressing[A]. Powder Metallurgy[M]. Almere: ASM International, 2015: 313
5 Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
杨 锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129
6 Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder[J]. Acta Metall. Sin., 2018, 54: 1537
徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54: 1537
7 Raisson G, Guédou J Y, Guichard D, et al. Production of net-shape static parts by direct HIPing of nickel base superalloy prealloyed powders[J]. Adv. Mater. Res., 2011, 278: 277
8 Kracke A. Superalloys, the most successful alloy system of modern times - past, present and future[A]. Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, Pennsylvania: TMS, 2010: 13
9 Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014
常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究[D]. 沈阳: 中国科学院金属研究所, 2014
10 Habel U. Microstructure and mechanical properties of HIP PM 718[A]. Superalloys 718. 625. 706 and Various Derivatives[M]. Pittsburgh, Pennsylvania: TMS, 2001: 625
11 Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2006, A435-436: 84
12 Rao G A, Srinivas M, Sarma D S. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2006, A418: 282
13 Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact[J]. Mater. Sci. Eng., 2014, A599: 186
14 Chang L T, Sun W R, Cui Y Y, et al. Microstructure, tensile properties, and hot-working characteristics of a hot isostatic-pressed powder metallurgy superalloy[J]. Metall. Mater. Trans., 2017, 48A: 1273
15 Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries[J]. Mater. Sci. Eng., 2017, A682: 341
16 Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. J. Mater. Sci. Technol., 2014, 30: 1289
doi: 10.1016/j.jmst.2014.04.011
17 Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2017, 33: 172
18 Guo R P, Xu L, Zong B Y, et al. Preparation and ring rolling processing of large size Ti-6Al-4V powder compact[J]. Mater. Des., 2016, 99: 341
doi: 10.1016/j.matdes.2016.02.128
19 Rao G A, Kumar M, Srinivas M, et al. Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2004, 383: 201
doi: 10.1016/j.msea.2004.05.062
20 Wu J, Xu L, Guo R P, et al. Preparation of γ-TiAl alloy from powder metallurgy route and analysis of the influence factors of mechanical properties[J]. Chin. J. Mater. Res., 2015, 29: 127
吴 杰, 徐 磊, 郭瑞鹏 等. 粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素[J]. 材料研究学报, 2015, 29: 127
21 Wu J. Densification behavior of Ti-5Al-2.5Sn ELI pre-alloyed powders under hot isostatic pressing[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
邬 军. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为研究[D]. 沈阳: 中国科学院金属研究所, 2011
22 Cheng W X. Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing[D]. Beijing: University of Chinese Academy of Science, 2013
程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究[D]. 北京: 中国科学院大学, 2013
23 Guo R P, Xu L, Bai C G, et al. Effects of can design on tensile properties of typical powder metallurgy titanium alloys[J]. Chin. J. Nonferrous Met., 2014, 24: 2050
郭瑞鹏, 徐 磊, 柏春光 等. 包套设计对典型粉末钛合金拉伸性能的影响[J]. 中国有色金属学报, 2014, 24: 2050
24 Qiu C L. Net-shape hot isostatic pressing of a nickel-based powder superalloy[D]. Birmingham, UK: University of Birmingham, 2010
25 Lang L H, Wang G, Huang X N, et al. Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing[J]. Chin. J. Nonferrous Met., 2016, 26: 261
郎利辉, 王 刚, 黄西娜 等. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响[J]. 中国有色金属学报, 2016, 26: 261
26 Lu Z G, Wu J, Xu L, et al. Ring rolling forming and properties of Ti2AlNb special shaped ring prepared by powder metallurgy[J]. Acta Metall. Sin., 2019, 55: 729
卢正冠, 吴 杰, 徐 磊 等. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55: 729
doi: 10.11900/0412.1961.2019.00015
27 Hou J, Dong J X, Yao Z H, et al. Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096[J]. Mater. Sci. Eng., 2018, A724: 17
28 Ingesten N G, Warren R, Winberg L. The nature and origin of previous particle boundary precipitates in P/M superalloys[A]. Proceedings of a Conference held in Liège on High Temperature Alloys for Gas Turbines 1982[C]. Belgium: Springer, 1982: 1013
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[5] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[6] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[7] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[8] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[10] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[11] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[12] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[13] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[14] MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2019, 55(10): 1319-1328.
[15] Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. 金属学报, 2018, 54(11): 1653-1664.
No Suggested Reading articles found!