|
|
Aluminum Alloys: Solute Atom Clusters and Their Strengthening |
LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun( ) |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening. Acta Metall Sin, 2021, 57(11): 1484-1498.
|
Abstract Benefiting from the rapid development in advanced characterization technologies, solute atom clusters in metal materials can now be quantitatively characterized in a high temporal and spatial resolution. This greatly promotes in-depth investigations on solute atom clustering. As for the widely-used Al alloys, solute atom clusters are attracting increasing attention not only as precursors for the precipitates during the aging process but also as a novel approach to strengthen and toughen the Al alloys. Experimental evidence has proved that solute atom clusters can simultaneously afford high strength and great ductility, indicating potential tailoring freedom to achieve an excellent strength-ductility combination. In this paper, the recent progress in solute atom clustering associated with Al alloys are summarized, including comprehensive characterization, thermodynamics and kinetics of formation, influencing factors, strengthening and toughening, and an application example. Ultimately, from the author's point of view, possible key directions for further studies of solute atom clusters are also proposed.
|
Received: 23 July 2021
|
|
Fund: National Natural Science Foundation of China(51621063);Overseas Expertise Introduction Project for Discipline Innovation(BP2018008) |
About author: SUN Jun, professor, Tel: (029)82667143, E-mail: junsun@mail.xjtu.edu.cn
|
1 |
Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry (1) [J]. Light Alloy Fabricat. Technol., 2013, 41(8): 1
|
|
王建国, 王祝堂. 航空航天变形铝合金的进展(1) [J]. 轻合金加工技术, 2013, 41(8): 1
|
2 |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
|
|
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
|
3 |
Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
|
|
聂祚仁, 文胜平, 黄 晖等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
|
4 |
Hahn G T, Rosenfield A R. Metallurgical factors affecting fracture toughness of aluminum alloys [J]. Metall. Trans., 1975, 6A: 653
|
5 |
Liu G, Sun J, Nan C W, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys [J]. Acta Mater., 2005, 53: 3459
|
6 |
Polmear I, StJohn D, Nie J F. Light Alloys [M]. 5th Ed., Boston: Elsevier, 2017: 1
|
7 |
Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
|
8 |
Garrett G G, Knott J F. The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys [J]. Metall. Trans., 1978, 9A: 1187
|
9 |
Liu G, Zhang G J, Ding X D, et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 1725
|
10 |
Liu G, Zhang G J, Wang R H, et al. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys [J]. Acta Mater., 2007, 55: 273
|
11 |
Argon A S. Strengthening Mechanisms in Crystal Plasticity [M]. Oxford: Oxford University Press, 2004: 1
|
12 |
Leyson G P M, Curtin W A, Hector L G, et al. Quantitative prediction of solute strengthening in aluminium alloys [J]. Nat. Mater., 2010, 9: 750
|
13 |
Curtin W A, Olmsted D L, Hector L G. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys [J]. Nat. Mater., 2006, 5: 875
|
14 |
Zhang P, Salman O U, Zhang J Y, et al. Taming intermittent plasticity at small scales [J]. Acta Mater., 2017, 128: 351
|
15 |
Panseri C, Federighi T. On the interaction between Mg atoms and vacancies in the Al-Zn10%-Mg0.1% alloy [J]. Acta Metall., 1964, 12: 272
|
16 |
Sha G, Cerezo A. Kinetic Monte Carlo simulation of clustering in an Al-Zn-Mg-Cu alloy (7050) [J]. Acta Metall., 2005, 53: 907
|
17 |
Marceau R K W, Sha G, Ferragut R, et al. Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing [J]. Acta Metall., 2010, 58: 4923
|
18 |
Ringer S P, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al-Cu alloys: An atom probe field ion microscopy study [J] Metall. Mater. Trans., 1995, 26A: 2207
|
19 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
|
20 |
Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies [J] Mater. Charact., 2000, 44: 101
|
21 |
Torsæter M, Hasting H S, Lefebvre W, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J. Appl. Phys., 2010, 108: 073527
|
22 |
Abid T, Boubertakh A, Hamamda S. Effect of pre-aging and maturing on the precipitation hardening of an Al-Mg-Si alloy [J]. J. Alloys Compd., 2010, 490: 166
|
23 |
Ringer S P, Hono K, Sakurai T, et al. Cluster hardening in an aged Al-Cu-Mg alloy [J]. Scr. Mater., 1997, 36: 517
|
24 |
Fu S, Zhang Y, Liu H Q, et al. Influence of electric field on the quenched-in vacancy and solute clustering during early stage ageing of Al-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34: 335
|
25 |
Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys [J]. Metall. Mater. Trans., 2017, 48A: 459
|
26 |
Kovaćs I, Lendvai J, Nagy E. The mechanism of clustering in supersaturated solid solutions of Al-Mg2Si alloys [J]. Acta Metall., 1972, 20: 975
|
27 |
Esmaeili S, Poole W J, Lloyd D J. Electrical resistivity studies on the precipitation behaviour of AA6111 [J]. Mater. Sci. Forum, 2000, 331-337: 995
|
28 |
Panseri C, Federighi T. A resistometric study of precipitation in an Aluminium-1.4 percent Mg2Si alloy [J]. Inst. Met. J., 1966, 94: 99
|
29 |
Pogatscher S. Phase Transitions in Quenched Nonferrous Metallic Systems [M]. Leoben: Montanuniversitat Leoben, 2017: 1
|
30 |
Seyedrezai H, Grebennikov D, Mascher P, et al. Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements [J]. Mater. Sci. Eng., 2009, A525: 186
|
31 |
Banhart J, Lay M D H, Chang C S T, et al. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy [J]. Phys. Rev., 2011, 83B: 014101
|
32 |
Liu M, Čížek J, Chang C S, et al. Early stages of solute clustering in an Al-Mg-Si alloy [J]. Acta Mater., 2015, 91: 355
|
33 |
Teixeira J D, Cram D G, Bourgeois L, et al. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates [J]. Acta Mater., 2008, 56: 6109
|
34 |
Dutta I, Allen S M. A calorimetric study of precipitation in commercial aluminium alloy 6061 [J]. J. Mater. Sci. Lett., 1991, 10: 323
|
35 |
Kim S N, Kim J H, Tezuka H, et al. Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration [J]. Mater. Trans., 2013, 54: 297
|
36 |
Starink M J, Gao N, Yan J L. The origins of room temperature hardening of Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2004, A387-389: 222
|
37 |
Schloth P, Menzel A, Fife J L, et al. Early cluster formation during rapid cooling of an Al-Cu-Mg alloy: In situ small-angle X-ray scattering [J]. Scr. Mater., 2015, 108: 56
|
38 |
Schloth P, Wagner J N, Fife J L, et al. Early precipitation during cooling of an Al-Zn-Mg-Cu alloy revealed by in situ small angle X-ray scattering [J]. Appl. Phys. Lett., 2014, 105: 101908
|
39 |
Deschamps A, De Geuser F, Horita Z, et al. Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy [J]. Acta Mater., 2014, 66: 105
|
40 |
Deschamps A, Fribourg G, Bréchet Y, et al. In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2012, 60: 1905
|
41 |
Deschamps A, Bastow T J, De Geuser F, et al. In situ evaluation of the microstructure evolution during rapid hardening of an Al-2.5Cu-1.5Mg (wt.%) alloy [J]. Acta Mater., 2011, 59: 2918
|
42 |
Lay M D H, Zurob H S, Hutchinson C R, et al. Vacancy behavior and solute cluster growth during natural aging of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2012, 43A: 4507
|
43 |
Banhart J, Chang C S T, Liang Z Q, et al. Natural aging in Al-Mg-Si alloys—A process of unexpected complexity [J]. Adv. Eng. Mater., 2010, 12: 559
|
44 |
Wang B, Wang X J, Song H, et al. Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy [J]. Acta Metall. Sin., 2014, 50: 685
|
|
王 波, 王晓姣, 宋 辉等. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响 [J]. 金属学报, 2014, 50: 685
|
45 |
Bai S, Liu Z Y, Ying P Y, et al. Quantitative study of the solute clustering and precipitation in a pre-stretched Al-Cu-Mg-Ag alloy [J]. J. Alloys Compd., 2017, 725: 1288
|
46 |
Poznak A, Marceau R K W, Sanders P G. Composition dependent thermal stability and evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography [J]. Mater. Sci. Eng., 2018, A721: 47
|
47 |
Cairney J M, Rajan K, Haley D, et al. Mining information from atom probe data [J]. Ultramicroscopy, 2015, 159: 324
|
48 |
Xiang X M, Lai Y X, Liu C H, et al. Sn-induced modification of the precipitation pathways upon high-temperature ageing in an Al-Mg-Si alloy [J]. Acta Metall. Sin., 2018, 54: 1273
|
|
向雪梅, 赖玉香, 刘春辉等. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变 [J]. 金属学报, 2018, 54: 1273
|
49 |
Li J H, An Z H, Hage F S, et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy [J]. Mater. Sci. Eng., 2019, A760: 366
|
50 |
Yang C, Cheng P M, Chen B A, et al. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96: 325
|
51 |
Lervik A, Thronsen E, Friis J, et al. Atomic structure of solute clusters in Al-Zn-Mg alloys [J]. Acta Mater., 2021, 205: 116574
|
52 |
Cao L F, Rometsch P A, Couper M J. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing [J]. Mater. Sci. Eng., 2013, A559: 257
|
53 |
Aruga Y, Kozuka M, Takaki Y, et al. Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2015, A631: 86
|
54 |
De Geuser F, Gault B. Metrology of small particles and solute clusters by atom probe tomography [J]. Acta Mater., 2020, 188: 406
|
55 |
Girifalco L A, Herman H. A model for the growth of Guinier-Preston zones—The vacancy pump [J]. Acta Metall., 1965, 13: 583
|
56 |
Esmaeili S, Vaumousse D, Zandbergen M W, et al. A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe [J]. Philos. Mag., 2007, 87: 3797
|
57 |
Zurob H S, Seyedrezai H. A model for the growth of solute clusters based on vacancy trapping [J]. Scr. Mater., 2009, 61: 141
|
58 |
Greenwood M, Sinclair C, Militzer M. Phase field crystal model of solute drag [J]. Acta Mater., 2012, 60: 5752
|
59 |
Berry J, Provatas N, Rottler J, et al. Phase field crystal modeling as a unified atomistic approach to defect dynamics [J]. Phys. Rev., 2014, 89B: 214117
|
60 |
Fallah V, Langelier B, Ofori-Opoku N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103: 290
|
61 |
Kleiven D, Ødegård O L, Laasonen K, et al. Atomistic simulations of early stage clusters in Al-Mg alloys [J]. Acta Mater., 2019, 166: 484
|
62 |
Miyoshi H, Kimizuka H, Ishii A, et al. Temperature-dependent nucleation kinetics of Guinier-Preston zones in Al-Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach [J]. Acta Mater., 2019, 179: 262
|
63 |
Du Y, Zhang L J, Cui S L, et al. Atomic mobilities and diffusivities in Al alloys [J]. Sci. China Technol. Sci., 2012, 55: 306
|
64 |
Wolverton C. Solute-vacancy binding in aluminum [J]. Acta Mater., 2007, 55: 5867
|
65 |
Peng J, Bahl S, Shyam A, et al. Solute-vacancy clustering in aluminum [J]. Acta Mater., 2020, 196: 747
|
66 |
Schmid F, Dumitraschkewitz P, Kremmer T, et al. Enhanced aging kinetics in Al-Mg-Si alloys by up-quenching [J]. Commun. Mater., 2021, 2: 58
|
67 |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
|
68 |
Shao D, Zhang P, Zhang J Y, et al. Effect of pre-strain on the solute clustering, mechanical properties, and work-hardening of a naturally aged Al-Cu-Mg alloy [J]. Metall. Mater. Trans., 2017, 48A: 4121
|
69 |
Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
|
70 |
Chen Z G, Ren J K, Yuan Z G, et al. Enhanced strength-plasticity combination in an Al-Cu-Mg alloy—Atomic scale microstructure regulation and strengthening mechanisms [J]. Mater. Sci. Eng., 2020, A787: 139447
|
71 |
Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion [J]. Acta Mater., 2014, 63: 169
|
72 |
Chen J Z, Lv L X, Zhen L, et al. Precipitation strengthening model of AA 7055 aluminium alloy [J]. Acta Metall. Sin., 2021, 57: 353
|
|
陈军洲, 吕良星, 甄 良等. AA 7055铝合金时效析出强化模型 [J]. 金属学报, 2021, 57: 353
|
73 |
Liang M C, Chen L, Zhao G Q. Effects of artificial ageing on mechanical properties and precipitation of 2A12 Al Sheet [J]. Acta Metall. Sin., 2020, 56: 736
|
|
梁孟超, 陈 良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响 [J]. 金属学报, 2020, 56: 736
|
74 |
Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
|
75 |
Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy [J]. Scr. Mater., 2011, 65: 592
|
76 |
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
|
|
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
|
77 |
Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: A review [J]. Rare Met., 2020, 39: 636
|
78 |
Sun F F, Nash G L, Li Q Y, et al. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1015
|
79 |
Gong B, Wen S P, Huang H, et al. Evolution of nanoscale Al3 (ZrxEr1-x) precipitates in Al-6Mg-0.7Mn-0.1Zr-0.3Er alloy during annealing [J]. Acta Metall. Sin., 2010, 46: 850
|
|
宫 博, 文胜平, 黄 晖等. 退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化 [J]. 金属学报, 2010, 46: 850
|
80 |
Nie J F, Muddle B C. Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates [J]. Acta Mater., 2008, 56: 3490
|
81 |
Weng Y Y, Ding L P, Zhang Z Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy [J]. Acta Mater., 2019, 180: 301
|
82 |
Muddle B C, Polmear I J. The precipitate Ω phase in Al-Cu-Mg-Ag alloys [J]. Acta Metall., 1989, 37: 777
|
83 |
Medrano S, Zhao H, De Geuser F, et al. Cluster hardening in Al-3Mg triggered by small Cu additions [J]. Acta Mater., 2018, 161: 12
|
84 |
Ivanov R, Deschamps A, De Geuser F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions [J]. Acta Mater., 2018, 157: 186
|
85 |
Hatakeyama D, Nishimura K, Matsuda K, et al. Effect of copper addition on the cluster formation behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the natural aging [J]. Metall. Mater. Trans., 2018, 49A: 5871
|
86 |
Liu M, Banhart J. Effect of Cu and Ge on solute clustering in Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2016, A658: 238
|
87 |
Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
|
88 |
Esmaeili S, Lloyd D J, Poole W J. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111 [J]. Acta Mater., 2003, 51: 3467
|
89 |
Starink M J, Cao L F, Rometsch P A. A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys [J]. Acta Mater., 2012, 60: 4194
|
90 |
Starink M J, Wang S C. The thermodynamics of and strengthening due to co-clusters: General theory and application to the case of Al-Cu-Mg alloys [J]. Acta Mater., 2009, 57: 2376
|
91 |
Zhao Q L. Cluster strengthening in aluminium alloys [J]. Scr. Mater., 2014, 84-85: 43
|
92 |
de Vaucorbeil A, Poole W J, Sinclair C W. The superposition of strengthening contributions in engineering alloys [J]. Mater. Sci. Eng., 2013, A582: 147
|
93 |
Marceau R K W, de Vaucorbeil A, Sha G, et al. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling [J]. Acta Mater., 2013, 61: 7285
|
94 |
Zhang P, Shi K K, Bian J J, et al. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy [J]. Acta Mater., 2021, 207: 116682
|
95 |
Shi K K, Zhao X L, Zhang P, et al. Cluster-growth kinetics, plastic deformation and fracture in naturally aged Al-Zn-Mg alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 2513
|
|
史坤坤, 赵小龙, 张 鹏等. 自然时效Al-Zn-Mg合金团簇长大动力学及其变形断裂特性 [J]. 中国有色金属学报, 2020, 30: 2513
|
96 |
Aaron H B, Fainstein D, Kotler G R. Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations [J]. J. Appl. Phys., 1970, 41: 4404
|
97 |
Meyers M A, Chawla K K. Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 2009: 1
|
98 |
Bray G H, Glazov M, Rioja R J, et al. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys [J]. Int. J. Fatigue, 2001, 23(suppl.): 265
|
99 |
Bai S, Liu Z Y, Zhou X W, et al. Strain-induced dissolution of Cu-Mg co-clusters and dynamic recrystallization near a fatigue crack tip of an underaged Al-Cu-Mg alloy during cyclic loading at ambient temperature [J]. Scr. Mater., 2011, 64: 1133
|
100 |
Liu M, Liu Z Y, Bai S, et al. Solute cluster size effect on the fatigue crack propagation resistance of an underaged Al-Cu-Mg alloy [J]. Int. J. Fatigue, 2016, 84: 104
|
101 |
Liu M, Liu Z Y, Bai S, et al. Analysis on the dissolution behavior of various size Cu-Mg co-clusters near a fatigue crack tip of underaged Al-Cu-Mg alloy during cyclic loading [J]. J. Alloys Compd., 2017, 699: 119
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|