Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1484-1498    DOI: 10.11900/0412.1961.2021.00301
Overview Current Issue | Archive | Adv Search |
Aluminum Alloys: Solute Atom Clusters and Their Strengthening
LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun()
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening. Acta Metall Sin, 2021, 57(11): 1484-1498.

Download:  HTML  PDF(1734KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Benefiting from the rapid development in advanced characterization technologies, solute atom clusters in metal materials can now be quantitatively characterized in a high temporal and spatial resolution. This greatly promotes in-depth investigations on solute atom clustering. As for the widely-used Al alloys, solute atom clusters are attracting increasing attention not only as precursors for the precipitates during the aging process but also as a novel approach to strengthen and toughen the Al alloys. Experimental evidence has proved that solute atom clusters can simultaneously afford high strength and great ductility, indicating potential tailoring freedom to achieve an excellent strength-ductility combination. In this paper, the recent progress in solute atom clustering associated with Al alloys are summarized, including comprehensive characterization, thermodynamics and kinetics of formation, influencing factors, strengthening and toughening, and an application example. Ultimately, from the author's point of view, possible key directions for further studies of solute atom clusters are also proposed.

Key words:  aluminum alloy      solute atom cluster      strengthening/toughening      microstructural characterization      mechanical property     
Received:  23 July 2021     
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(51621063);Overseas Expertise Introduction Project for Discipline Innovation(BP2018008)
About author:  SUN Jun, professor, Tel: (029)82667143, E-mail: junsun@mail.xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00301     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1484

Fig.1  Representative HAADF-STEM images showing the Sc clusters in an Al-0.3%Sc aged at 250oC in low (a) and high (b) magnification, which are compared with the Al3Sc precipitates created at higher temperature (c), representative APT images showing the Sc clusters in the alloy aged for 2, 8, and 14 h, respectively (d), together with the statistical results on the cluster size (Inset shows the results of large clusters with atoms > 33) (e)[50]
Fig.2  Aging time-dependent relative increase in electrical resistivity (Δρ / ρ0, ρ0 is the electrical resistivity at quenched condition (or aging time = 0)) of naturally aged Al-3.6%Cu-1.6Mg alloy after different pre-strains (0, 2.0%, 4.5%, 6.0%, and 9.0%) (a), representative APT images showing Cu-Mg clusters in the naturally-aged alloys with pre-strains of 0 and 9.0%, respectively (b)[68]
Fig.3  Representative APT images to show the Zn and Mg atom distribution and Zn-Mg clusters in the Al-4.75%Zn-1.39%Mg alloy naturally aged for 1440 h (60 d) (size: 225 nm × 56 nm × 56 nm) (a), statistical results on the size and density of the Zn-Mg cluster in the 1440 h-sample stretched to different strains (ε) of 0, 7%, 13%, and 20% (b), evolution of the normalized average cluster size on the stretched strain: experimental results (dots) vs model predictions (curves) (c), and tensile stress-strain curves of the as-quenched (AQ), naturally-aged (NA) 24 h, 5 d, 60 d, peak-aged T6, and over-aged T7 samples, for comparison (d)[94]
Fig.4  Room-temperature stress-strain curves of the twin-roll cast (solid line) and hot-rolled (dash line) Al-Mg-Si sheets (Insets are APT image to show the Mg-Si clusters in the twin-roll (TR) cast sheet and TEM images to show dislocations and precipitates in the hot-rolled (HR) one)
1 Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry (1) [J]. Light Alloy Fabricat. Technol., 2013, 41(8): 1
王建国, 王祝堂. 航空航天变形铝合金的进展(1) [J]. 轻合金加工技术, 2013, 41(8): 1
2 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
3 Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
聂祚仁, 文胜平, 黄 晖等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
4 Hahn G T, Rosenfield A R. Metallurgical factors affecting fracture toughness of aluminum alloys [J]. Metall. Trans., 1975, 6A: 653
5 Liu G, Sun J, Nan C W, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys [J]. Acta Mater., 2005, 53: 3459
6 Polmear I, StJohn D, Nie J F. Light Alloys [M]. 5th Ed., Boston: Elsevier, 2017: 1
7 Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
8 Garrett G G, Knott J F. The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys [J]. Metall. Trans., 1978, 9A: 1187
9 Liu G, Zhang G J, Ding X D, et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 1725
10 Liu G, Zhang G J, Wang R H, et al. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys [J]. Acta Mater., 2007, 55: 273
11 Argon A S. Strengthening Mechanisms in Crystal Plasticity [M]. Oxford: Oxford University Press, 2004: 1
12 Leyson G P M, Curtin W A, Hector L G, et al. Quantitative prediction of solute strengthening in aluminium alloys [J]. Nat. Mater., 2010, 9: 750
13 Curtin W A, Olmsted D L, Hector L G. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys [J]. Nat. Mater., 2006, 5: 875
14 Zhang P, Salman O U, Zhang J Y, et al. Taming intermittent plasticity at small scales [J]. Acta Mater., 2017, 128: 351
15 Panseri C, Federighi T. On the interaction between Mg atoms and vacancies in the Al-Zn10%-Mg0.1% alloy [J]. Acta Metall., 1964, 12: 272
16 Sha G, Cerezo A. Kinetic Monte Carlo simulation of clustering in an Al-Zn-Mg-Cu alloy (7050) [J]. Acta Metall., 2005, 53: 907
17 Marceau R K W, Sha G, Ferragut R, et al. Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing [J]. Acta Metall., 2010, 58: 4923
18 Ringer S P, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al-Cu alloys: An atom probe field ion microscopy study [J] Metall. Mater. Trans., 1995, 26A: 2207
19 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
20 Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies [J] Mater. Charact., 2000, 44: 101
21 Torsæter M, Hasting H S, Lefebvre W, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J. Appl. Phys., 2010, 108: 073527
22 Abid T, Boubertakh A, Hamamda S. Effect of pre-aging and maturing on the precipitation hardening of an Al-Mg-Si alloy [J]. J. Alloys Compd., 2010, 490: 166
23 Ringer S P, Hono K, Sakurai T, et al. Cluster hardening in an aged Al-Cu-Mg alloy [J]. Scr. Mater., 1997, 36: 517
24 Fu S, Zhang Y, Liu H Q, et al. Influence of electric field on the quenched-in vacancy and solute clustering during early stage ageing of Al-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34: 335
25 Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys [J]. Metall. Mater. Trans., 2017, 48A: 459
26 Kovaćs I, Lendvai J, Nagy E. The mechanism of clustering in supersaturated solid solutions of Al-Mg2Si alloys [J]. Acta Metall., 1972, 20: 975
27 Esmaeili S, Poole W J, Lloyd D J. Electrical resistivity studies on the precipitation behaviour of AA6111 [J]. Mater. Sci. Forum, 2000, 331-337: 995
28 Panseri C, Federighi T. A resistometric study of precipitation in an Aluminium-1.4 percent Mg2Si alloy [J]. Inst. Met. J., 1966, 94: 99
29 Pogatscher S. Phase Transitions in Quenched Nonferrous Metallic Systems [M]. Leoben: Montanuniversitat Leoben, 2017: 1
30 Seyedrezai H, Grebennikov D, Mascher P, et al. Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements [J]. Mater. Sci. Eng., 2009, A525: 186
31 Banhart J, Lay M D H, Chang C S T, et al. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy [J]. Phys. Rev., 2011, 83B: 014101
32 Liu M, Čížek J, Chang C S, et al. Early stages of solute clustering in an Al-Mg-Si alloy [J]. Acta Mater., 2015, 91: 355
33 Teixeira J D, Cram D G, Bourgeois L, et al. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates [J]. Acta Mater., 2008, 56: 6109
34 Dutta I, Allen S M. A calorimetric study of precipitation in commercial aluminium alloy 6061 [J]. J. Mater. Sci. Lett., 1991, 10: 323
35 Kim S N, Kim J H, Tezuka H, et al. Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration [J]. Mater. Trans., 2013, 54: 297
36 Starink M J, Gao N, Yan J L. The origins of room temperature hardening of Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2004, A387-389: 222
37 Schloth P, Menzel A, Fife J L, et al. Early cluster formation during rapid cooling of an Al-Cu-Mg alloy: In situ small-angle X-ray scattering [J]. Scr. Mater., 2015, 108: 56
38 Schloth P, Wagner J N, Fife J L, et al. Early precipitation during cooling of an Al-Zn-Mg-Cu alloy revealed by in situ small angle X-ray scattering [J]. Appl. Phys. Lett., 2014, 105: 101908
39 Deschamps A, De Geuser F, Horita Z, et al. Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy [J]. Acta Mater., 2014, 66: 105
40 Deschamps A, Fribourg G, Bréchet Y, et al. In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2012, 60: 1905
41 Deschamps A, Bastow T J, De Geuser F, et al. In situ evaluation of the microstructure evolution during rapid hardening of an Al-2.5Cu-1.5Mg (wt.%) alloy [J]. Acta Mater., 2011, 59: 2918
42 Lay M D H, Zurob H S, Hutchinson C R, et al. Vacancy behavior and solute cluster growth during natural aging of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2012, 43A: 4507
43 Banhart J, Chang C S T, Liang Z Q, et al. Natural aging in Al-Mg-Si alloys—A process of unexpected complexity [J]. Adv. Eng. Mater., 2010, 12: 559
44 Wang B, Wang X J, Song H, et al. Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy [J]. Acta Metall. Sin., 2014, 50: 685
王 波, 王晓姣, 宋 辉等. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响 [J]. 金属学报, 2014, 50: 685
45 Bai S, Liu Z Y, Ying P Y, et al. Quantitative study of the solute clustering and precipitation in a pre-stretched Al-Cu-Mg-Ag alloy [J]. J. Alloys Compd., 2017, 725: 1288
46 Poznak A, Marceau R K W, Sanders P G. Composition dependent thermal stability and evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography [J]. Mater. Sci. Eng., 2018, A721: 47
47 Cairney J M, Rajan K, Haley D, et al. Mining information from atom probe data [J]. Ultramicroscopy, 2015, 159: 324
48 Xiang X M, Lai Y X, Liu C H, et al. Sn-induced modification of the precipitation pathways upon high-temperature ageing in an Al-Mg-Si alloy [J]. Acta Metall. Sin., 2018, 54: 1273
向雪梅, 赖玉香, 刘春辉等. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变 [J]. 金属学报, 2018, 54: 1273
49 Li J H, An Z H, Hage F S, et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy [J]. Mater. Sci. Eng., 2019, A760: 366
50 Yang C, Cheng P M, Chen B A, et al. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96: 325
51 Lervik A, Thronsen E, Friis J, et al. Atomic structure of solute clusters in Al-Zn-Mg alloys [J]. Acta Mater., 2021, 205: 116574
52 Cao L F, Rometsch P A, Couper M J. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing [J]. Mater. Sci. Eng., 2013, A559: 257
53 Aruga Y, Kozuka M, Takaki Y, et al. Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2015, A631: 86
54 De Geuser F, Gault B. Metrology of small particles and solute clusters by atom probe tomography [J]. Acta Mater., 2020, 188: 406
55 Girifalco L A, Herman H. A model for the growth of Guinier-Preston zones—The vacancy pump [J]. Acta Metall., 1965, 13: 583
56 Esmaeili S, Vaumousse D, Zandbergen M W, et al. A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe [J]. Philos. Mag., 2007, 87: 3797
57 Zurob H S, Seyedrezai H. A model for the growth of solute clusters based on vacancy trapping [J]. Scr. Mater., 2009, 61: 141
58 Greenwood M, Sinclair C, Militzer M. Phase field crystal model of solute drag [J]. Acta Mater., 2012, 60: 5752
59 Berry J, Provatas N, Rottler J, et al. Phase field crystal modeling as a unified atomistic approach to defect dynamics [J]. Phys. Rev., 2014, 89B: 214117
60 Fallah V, Langelier B, Ofori-Opoku N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103: 290
61 Kleiven D, Ødegård O L, Laasonen K, et al. Atomistic simulations of early stage clusters in Al-Mg alloys [J]. Acta Mater., 2019, 166: 484
62 Miyoshi H, Kimizuka H, Ishii A, et al. Temperature-dependent nucleation kinetics of Guinier-Preston zones in Al-Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach [J]. Acta Mater., 2019, 179: 262
63 Du Y, Zhang L J, Cui S L, et al. Atomic mobilities and diffusivities in Al alloys [J]. Sci. China Technol. Sci., 2012, 55: 306
64 Wolverton C. Solute-vacancy binding in aluminum [J]. Acta Mater., 2007, 55: 5867
65 Peng J, Bahl S, Shyam A, et al. Solute-vacancy clustering in aluminum [J]. Acta Mater., 2020, 196: 747
66 Schmid F, Dumitraschkewitz P, Kremmer T, et al. Enhanced aging kinetics in Al-Mg-Si alloys by up-quenching [J]. Commun. Mater., 2021, 2: 58
67 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
68 Shao D, Zhang P, Zhang J Y, et al. Effect of pre-strain on the solute clustering, mechanical properties, and work-hardening of a naturally aged Al-Cu-Mg alloy [J]. Metall. Mater. Trans., 2017, 48A: 4121
69 Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
70 Chen Z G, Ren J K, Yuan Z G, et al. Enhanced strength-plasticity combination in an Al-Cu-Mg alloy—Atomic scale microstructure regulation and strengthening mechanisms [J]. Mater. Sci. Eng., 2020, A787: 139447
71 Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion [J]. Acta Mater., 2014, 63: 169
72 Chen J Z, Lv L X, Zhen L, et al. Precipitation strengthening model of AA 7055 aluminium alloy [J]. Acta Metall. Sin., 2021, 57: 353
陈军洲, 吕良星, 甄 良等. AA 7055铝合金时效析出强化模型 [J]. 金属学报, 2021, 57: 353
73 Liang M C, Chen L, Zhao G Q. Effects of artificial ageing on mechanical properties and precipitation of 2A12 Al Sheet [J]. Acta Metall. Sin., 2020, 56: 736
梁孟超, 陈 良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响 [J]. 金属学报, 2020, 56: 736
74 Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
75 Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy [J]. Scr. Mater., 2011, 65: 592
76 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
77 Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: A review [J]. Rare Met., 2020, 39: 636
78 Sun F F, Nash G L, Li Q Y, et al. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1015
79 Gong B, Wen S P, Huang H, et al. Evolution of nanoscale Al3 (ZrxEr1-x) precipitates in Al-6Mg-0.7Mn-0.1Zr-0.3Er alloy during annealing [J]. Acta Metall. Sin., 2010, 46: 850
宫 博, 文胜平, 黄 晖等. 退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化 [J]. 金属学报, 2010, 46: 850
80 Nie J F, Muddle B C. Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates [J]. Acta Mater., 2008, 56: 3490
81 Weng Y Y, Ding L P, Zhang Z Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy [J]. Acta Mater., 2019, 180: 301
82 Muddle B C, Polmear I J. The precipitate Ω phase in Al-Cu-Mg-Ag alloys [J]. Acta Metall., 1989, 37: 777
83 Medrano S, Zhao H, De Geuser F, et al. Cluster hardening in Al-3Mg triggered by small Cu additions [J]. Acta Mater., 2018, 161: 12
84 Ivanov R, Deschamps A, De Geuser F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions [J]. Acta Mater., 2018, 157: 186
85 Hatakeyama D, Nishimura K, Matsuda K, et al. Effect of copper addition on the cluster formation behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the natural aging [J]. Metall. Mater. Trans., 2018, 49A: 5871
86 Liu M, Banhart J. Effect of Cu and Ge on solute clustering in Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2016, A658: 238
87 Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
88 Esmaeili S, Lloyd D J, Poole W J. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111 [J]. Acta Mater., 2003, 51: 3467
89 Starink M J, Cao L F, Rometsch P A. A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys [J]. Acta Mater., 2012, 60: 4194
90 Starink M J, Wang S C. The thermodynamics of and strengthening due to co-clusters: General theory and application to the case of Al-Cu-Mg alloys [J]. Acta Mater., 2009, 57: 2376
91 Zhao Q L. Cluster strengthening in aluminium alloys [J]. Scr. Mater., 2014, 84-85: 43
92 de Vaucorbeil A, Poole W J, Sinclair C W. The superposition of strengthening contributions in engineering alloys [J]. Mater. Sci. Eng., 2013, A582: 147
93 Marceau R K W, de Vaucorbeil A, Sha G, et al. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling [J]. Acta Mater., 2013, 61: 7285
94 Zhang P, Shi K K, Bian J J, et al. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy [J]. Acta Mater., 2021, 207: 116682
95 Shi K K, Zhao X L, Zhang P, et al. Cluster-growth kinetics, plastic deformation and fracture in naturally aged Al-Zn-Mg alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 2513
史坤坤, 赵小龙, 张 鹏等. 自然时效Al-Zn-Mg合金团簇长大动力学及其变形断裂特性 [J]. 中国有色金属学报, 2020, 30: 2513
96 Aaron H B, Fainstein D, Kotler G R. Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations [J]. J. Appl. Phys., 1970, 41: 4404
97 Meyers M A, Chawla K K. Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 2009: 1
98 Bray G H, Glazov M, Rioja R J, et al. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys [J]. Int. J. Fatigue, 2001, 23(suppl.): 265
99 Bai S, Liu Z Y, Zhou X W, et al. Strain-induced dissolution of Cu-Mg co-clusters and dynamic recrystallization near a fatigue crack tip of an underaged Al-Cu-Mg alloy during cyclic loading at ambient temperature [J]. Scr. Mater., 2011, 64: 1133
100 Liu M, Liu Z Y, Bai S, et al. Solute cluster size effect on the fatigue crack propagation resistance of an underaged Al-Cu-Mg alloy [J]. Int. J. Fatigue, 2016, 84: 104
101 Liu M, Liu Z Y, Bai S, et al. Analysis on the dissolution behavior of various size Cu-Mg co-clusters near a fatigue crack tip of underaged Al-Cu-Mg alloy during cyclic loading [J]. J. Alloys Compd., 2017, 699: 119
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!