Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1471-1483    DOI: 10.11900/0412.1961.2021.00371
Overview Current Issue | Archive | Adv Search |
Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing
SUN Xiaofeng1, SONG Wei1,2, LIANG Jingjing1(), LI Jinguo1(), ZHOU Yizhou1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

SUN Xiaofeng, SONG Wei, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing. Acta Metall Sin, 2021, 57(11): 1471-1483.

Download:  HTML  PDF(3734KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The research and development progress of laser additive manufacturing technology in superalloys are summarized in this paper. The technical characteristics and application of additive manufacturing in superalloys, formation mechanism, and the types of microstructure and metallurgical defects are introduced in detail. Moreover, the defect control methods of additive manufacturing of superalloys are summarized from the aspects of laser parameters and composition design, and the direction of laser process parameter optimization and composition optimization is clarified. Finally, the future development trend and research direction of laser additive manufacturing in superalloys are summarized and prospected from the aspects of process optimization and material design.

Key words:  additive manufacturing      superalloy      microstructure      metallurgical defect      process optimization      composition optimization     
Received:  31 August 2021     
ZTFLH:  TG665  
Fund: National Science and Technology Major Project of China(Y2019-VII-0011-0151);National Natural Science Foundation of China(51771190)
About author:  LIANG Jingjing, associate professor, Tel: (024)23970809, E-mail: jjliang@imr.ac.cn
LI Jinguo, professor, Tel: (024)23971758, E-mail: jgli@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00371     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1471

Fig.1  Schematic of additive manufacturing (CAD—computer aided design)[17]
Fig.2  Schematic diagrams of selective laser melting (SLM) (a)[21] and laser melting deposition (LMD) (b)[22]
Fig.3  Additive manufactured superalloy components
Fig.4  Inconel 718 parts (a)[25], rocket oxidizer valve body (b)[26], and injector of rocket engine (c)[27]
Fig.5  Superalloy single-crystal parts fabricated by laser additive manufacturing[31]
Fig.6  Typical structure and evolution of additive manufacturing superalloys
Fig.7  Typical additive manufacturing superalloy structure defects
Fig.8  The specific location of crack of additive manufacturing superalloy (0.5 and 0.7 mm indicate different hatch spacings)
Fig.9  Precipitation phase between dendrites and element distribution at liquid cracks
Fig.10  The calculation and design space of new superalloys and the microstructure of experimental alloys[34]
1 Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
胡壮麒, 刘丽荣, 金 涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
2 Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60: 4888
3 Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
4 Mughrabi H, Tetzlaff U. Microstructure and high-temperature strength of monocrystalline nickel-base superalloys [J]. Adv. Eng. Mater., 2000, 2: 319
5 Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
6 Furrer D, Fecht H. Ni-based superalloys for turbine discs [J]. JOM, 1999, 51(1): 14
7 Panwisawas C, Tang T Y, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
8 Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
9 Melchels F P W, Domingos M A N, Klein T J, et al. Additive manufacturing of tissues and organs [J]. Prog. Polym. Sci., 2012, 37: 1079
10 Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HP SLM) of aluminum parts [J]. Phys. Procedia, 2011, 12: 271
11 Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1191
12 The FAA cleared the first 3D printed part to fly in a commercial jet engine from GE [EB/OL]. (2015-04-14).
13 SuperAdmin. Additive manufacturing & sustainability [EB/OL]. (2020-07-19).
14 Man diesel uses metal AM for serial turbine production [EB/OL]. (2017-04-25).
15 Cham J G, Bailey S A, Clark J E, et al. Fast and robust: Hexapedal robots via shape deposition manufacturing [J]. Int. J. Robot. Res., 2002, 21: 869
16 Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy [J]. Addit. Manuf. Technol., 2018, 61(10): 49
王 迪, 钱泽宇, 窦文豪等. 激光选区熔化成形高温镍基合金研究进展 [J]. 增材制造技术, 2018, 61(10): 49
17 Additive manufacturing: Siemens uses innovative technology to produce gas turbines [EB/OL].
18 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
19 Kellner T. Fit to print: New plant will assemble world's first passenger jet engine with 3D printed fuel nozzles, next-gen materials [EB/OL]. (2014-06-23).
20 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
21 Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
杨 强, 鲁中良, 黄福享等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
22 Ge J B, Zhang A F, Li D C, et al. Process research on DZ125L superalloy parts by laser metal direct forming [J]. Chin. J. Lasers, 2011, 38(7): 119
葛江波, 张安峰, 李涤尘等. 激光金属直接成形DZ125L高温合金零件工艺的研究 [J]. 中国激光, 2011, 38(7): 119
23 Man diesel uses metal am for serial turbine production [EB/OL].
24 im Durchbruch 3D-Druck / Breakthrough in 3D printing [EB/OL].
25 Messier D. MTI partners with NASA Johnson on 3D printed engine [EB/OL].
26 Rae Botsford End. SpaceX's SuperDraco engine: Abort capability all the way to orbit [EB/OL]. (2015-05-07)[2017-10-30].
27 Clemons R. Identify the best 3D-printing process for your application [EB/OL].
28 Wen S F, Li S, Wei Q S, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts [J]. J. Mater. Process. Technol., 2014, 214: 2660
29 Liu R C, Yang Y Q, Wang D. Research of upper surface roughness of metal parts fabricated by selective laser melting [J]. Laser Technol., 2013, 37: 425
刘睿诚, 杨永强, 王 迪. 选区激光熔化成型金属零件上表面粗糙度的研究 [J]. 激光技术, 2013, 37: 425
30 Huang W D, Li Y M, Feng L P, et al. Laser solid forming of metal powder materials [J]. J. Mater. Eng., 2002, (3): 40
黄卫东, 李延民, 冯莉萍等. 金属材料激光立体成形技术 [J]. 材料工程, 2002, (3): 40
31 Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
32 Ci S W, Liang J J, Li J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45: 23
33 Kurz W, Fisher D J. Dendrite growth at the limit of stability: Tip radius and spacing [J]. Acta Mater., 1981, 29: 11
34 Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
35 Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
36 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
37 Wang K B, Liu Y X, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing [J]. J. Alloys Compd., 2020, 819: 152936
38 Carter L N, Attallah M M, Reed R C. Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterization, quantification and mitigation of cracking [M]. John Wiley & Sons, Inc., 2012: 577
39 Perevoshchikova N, Rigaud J, Sha Y, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design [J]. Rapid Prototyp. J., 2017, 23: 881
40 Zhang Y W, Zhang S Q, Wang H M. Microstructure and mechanical properties of directional rapidly solidified Ni-base superalloy Rene95 by laser melting deposition manufacturing [J]. Rare Met. Mater. Eng., 2008, 37: 169
张亚玮, 张述泉, 王华明. 激光熔化沉积定向快速凝固高温合金组织及性能 [J]. 稀有金属材料与工程, 2008, 37: 169
41 Liu L R, Jin T, Zhao N R, et al. Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2004, A385: 105
42 Dye D, Hunziker O, Reed R C. Numerical analysis of the weldability of superalloys [J]. Acta Mater., 2001, 49: 683
43 Liang Y J, Li J, Li A, et al. Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions [J]. Scr. Mater., 2017, 127: 58
44 Lippold J C. Welding Metallurgy and Weldability [M]. Hoboken: John Wiley & Sons, Inc., 2015: 1
45 Kou S. Solidification and liquation cracking issues in welding [J]. JOM, 2003, 55(6): 37
46 Zhang X Q, Chen H B, Xu L M, et al. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy [J]. Mater. Des., 2019, 183: 108105
47 Ploshikhin V, Prikhodovsky A, Makhutin M, et al. Mechanical-metallurgical approach to modeling of solidification cracking in welds [A]. Hot Cracking Phenomena in Welds [M]. Berlin, Heidelberg: Springer, 2005: 223
48 Wang H M, Zhang J H, Tang Y J, et al. Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy [J]. Mater. Sci. Eng., 1992, A156: 109
49 Nastac L, Stefanescu D M. Computational modeling of NbC/Laves formation in INCONEL 718 equiaxed castings [J]. Metall. Mater. Trans., 1997, 28A: 1582
50 Egbewande A T, Zhang H R, Sidhu R K, et al. Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification [J]. Metall. Mater. Trans., 2009, 40A: 2694
51 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
52 Collins M G, Lippold J C. An investigation of ductility dip cracking in nickel-based filler materials-part I [J]. Weld J., 2003, 82: 288s
53 Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: part II-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, A380: 245
54 Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting [J]. Addit. Manuf., 2017, 13: 103
55 Moussaoui K, Rubio W, Mousseigne M, et al. Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2018, A735: 182
56 Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties [J]. J. Mater. Process. Technol., 2013, 213: 1387
57 Bazaz B, Zarei-Hanzaki A, Fatemi-Varzaneh S M. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion [J]. Mater. Sci. Eng., 2013, A559: 595
58 Liu Z Y, Li C, Fang X Y, et al. Energy consumption in additive manufacturing of metal parts [J]. Procedia Manuf., 2018, 26: 834
59 Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting [J]. Powder Technol., 2017, 310: 60
60 Cloots M, Uggowitzer P J, Wegener K, et al. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
61 Basak A, Das S. Additive manufacturing of nickel-base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties [J]. Adv. Eng. Mater., 2017, 19: 1600690
62 Tang M, Pistorius P C, Beuth J L. Prediction of lack-of-fusion porosity for powder bed fusion [J]. Addit. Manuf., 2017, 14: 39
63 Bajaj P, Wright J, Todd I, et al. Predictive process parameter selection for Selective Laser Melting Manufacturing: Applications to high thermal conductivity alloys [J]. Addit. Manuf., 2019, 27: 246
64 Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3
65 Yang J J, Li F Z, Wang Z M, et al. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication [J]. J. Mater. Process. Technol., 2015, 225: 229
66 Song H Y, Lei J B, Xie J C, et al. Laser melting deposition of K403 superalloy: The influence of processing parameters on the microstructure and wear performance [J]. J. Alloys Compd., 2019, 805: 551
67 Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals [J]. Acta Mater., 2004, 52: 3173
68 Ojo O A, Richards N L, Chaturvedi M C. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy [J]. Scr. Mater., 2004, 51: 683
69 Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100: 224
70 Donachie M J, Donachie S J. Superalloys: A Technical Guide [M]. 2nd Ed., Materials Park: ASM International, 2002: 1
71 Vitek J M, Babu S S, David S A, et al. Cracking behavior in nickel-based single crystal superalloy welds [A]. Proceedings of the 7th International conference on Trends in Welding Research [C]. Pine Mountain, May16-20, 2005: 16
72 Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
73 Kozeschnik E, Rindler W, Buchmayr B. Scheil-Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid-solid phase transformations [J]. Int. J. Mater. Res., 2007, 98: 826
74 Kou S. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
75 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci, 2018, 92: 112
76 Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach [J]. Acta Mater., 2015, 94: 59
77 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
78 Tang L, Liang J J, Cui C Y, et al. Influence of Co content on the microstructures and mechanical properties of a Ni-Co base superalloy made by specific additive manufacturing process [J]. Mater. Sci. Eng., 2020, A786: 139438
79 Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
80 Han Q Q, Gu Y C, Soe S, et al. Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing [J]. Opt. Laser Technol., 2020, 124: 105984
81 Murray S P, Pusch K M, Polonsky A T, et al. A defect-resistant Co-Ni superalloy for 3D printing [J]. Nat. Commun., 2020, 11: 4975
82 Thomas M, Baxter G J, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys [J]. Acta Mater., 2016, 108: 26
83 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
84 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
85 Guo J T, Hou J S, Zhou L Z, et al. Prediction and improvement of mechanical properties of corrosion resistant superalloy K44 with adjusting minor additions C, B and Hf [J]. Mater. Trans., 2006, 47: 198
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[11] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[15] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
No Suggested Reading articles found!