Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1067-1076    DOI: 10.11900/0412.1961.2019.00148
Overview Current Issue | Archive | Adv Search |
Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China
GONG Shengkai1(),SHANG Yong1,ZHANG Ji2,GUO Xiping3,LIN Junpin4,ZHAO Xihong5
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. High Temperature Materials Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
4. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
5. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China. Acta Metall Sin, 2019, 55(9): 1067-1076.

Download:  HTML  PDF(17147KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Intermetallics is composed of two or more metals or of a metal and a nonmetal. The coexistence of covalent and metal bond makes the intermetallic compound have long-term ordered superlattice structure, which greatly reduces dislocation mobility at high temperature, thus exhibiting good high-temperature strength. Typical structural intermetallics such as Ti-Al, Ni-Al and Nb-Si, have the advantages of excellent high-temperature strength and low density, which are very suitable for high-temperature structural parts of aerospace. However, the application of such materials is limited by low fracture toughness at room temperature and poor oxidation resistance at high temperature, which attracts more and more attentions and brings challenges in this field. In this paper, the research and application status in high-temperature strengthening, toughening, oxidation resistance and preparation technology of Ti-Al, Ni-Al, Nb-Si intermetallics-based alloys are introduced.

Key words:  intermetallics      high-temperature resistance      mechanical property      alloying design      oxidation resistance     
Received:  07 May 2019     
ZTFLH:  TG113.1  
Fund: Supported by National Natural Science Foundations of China(51671015、51771007);National Science and Technology Major Project(2017-VI-0011-0083、2017-VI-0012-0084)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00148     OR     https://www.ams.org.cn/EN/Y2019/V55/I9/1067

Fig.1  The duplex (a) and near fully lamellae (b) microstructures in TiAl-Nb alloy after rolling (ND—normal direction, RD—rolling direction)
Fig.2  XRD spectra of the cast TiAl-Nb alloys with different Al contents (a) and comparison of the Larson-Miller creep parameter of studied alloys (T—temperature, tf—time, P—Larson-Miller parameter) (b)
Fig.3  Microstructures in rolled bars of Ti-22Al-25Nb alloy (?300 mm) for eight times of forging (a) and five times of forging (b)
Fig.4  Microstructures of IC21 alloy before heat-treatment (a), after full heat treatment (b) and after thermal exposure at 1200 ℃ for 2 h (c)
Fig.5  Cyclic oxidation weight gain curves of IC21 at 1100 ℃ (a) and the creep curve of IC21[111] at 1100 ℃ under 137 MPa (Insets show the morpholoyies of alloys at different time) (b)
ElementConstituent phaseOxidation resistanceMechanical property
Ti, Hf, ZrPromoting theImproving the oxidationHf and Zr enhance the fracture toughness and high
formation ofresistancetemperature strength, and Ti also enhances the fracture
γ-Nb5Si3toughness, but excessive Ti content degrades the high-
temperature creep resistance of the alloys
Mo, W, AlImproving theW and Al improve theMo enhances the fracture toughness and high temperature
stability of β-Nb5Si3oxidation resistance,strength; W improves the high temperature strength; Al
while Mo degrades ithas negative impact on mechanical properties
CrPromoting theImproving the oxidationDeteriorating the fracture toughness of the alloys
formation ofresistance
Cr2Nb
Rare earth-Improving the oxidationImproving the fracture toughness of the alloys
resistance
Table 1  The effects of alloying elements on the constituent phases and properties of Nb-Si based alloys[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]
Fig.6  Longitudinal (a) and transverse (b) microstructures of Nb-15Si-22Ti-5Cr-3Al-3Hf alloy integrally directionally solidified at 2050 ℃ and a withdrawal rate of 200 μm/s
[1] ChenG L, ZhangW J, LiuZ C , et al. Microstructures and properties of high-Nb containing TiAl-base alloys [A]. Proceedings of Gamma Titanium Aluminides [C]. Warrendale, PA: TMS, 1999: 371
[2] LiuZ C, LinJ P, LiS J , et al. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys [J]. Intermetallics, 2002, 10: 653
[3] ChenG L. R&D status and prospect on the ordered structural intermetallics [J]. Mater. Rev., 2000, 14(9): 1
[3] 陈国良. 金属间化合物结构材料研究现状与发展 [J]. 材料导报, 2000, 14(9): 1)
[4] JarvisD J, VossD. IMPRESS integrated project—An overview paper [J]. Mater. Sci. Eng., 2005, A413-414: 583
[5] WuX H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
[6] VoiceW E, HendersonM, SheltonE F J , et al. Gamma titanium aluminide, TNB [J]. Intermetallics, 2005, 13: 959
[7] BraunR, LaskaN, KnittelS , et al. Effect of intermetallic coatings on the tensile properties of a γ-TiAl based TNM alloy [J]. Mater. Sci. Eng., 2017, A699: 118
[8] ImaevV M, ImaevR M, OlenevaT I , et al. Microstructure and mechanical properties of the intermetallic alloy Ti-45Al-6(Nb, Mo)-0.2B [J]. Phys. Met. Metallogr., 2008, 106: 641
[9] LiS J, LiuZ C, LinJ P , et al. The creep properties of high niobium containing TiAl alloy [J]. Rare Met. Mater. Eng., 2002, 31: 31
[9] 李书江, 刘自成, 林均品等. 一种高铌TiAl合金的蠕变性能 [J]. 稀有金属材料与工程, 2002, 31: 31
[10] XuL H, XuX J, LinJ P , et al. Effect of canned forging on microstructure of high Nb-containing TiAl alloy [J]. J. Mater. Eng., 2004, (8): 21
[10] 徐丽华, 徐向俊, 林均品等. 包套锻造对高Nb-TiAl基合金组织的影响 [J]. 材料工程, 2004, (8): 21)
[11] XuL H, XuX J, WangY L , et al. Effect of heat treatment on the microstructure of two-step forging for high Nb containing TiAl alloy [J]. J. Aeronaut. Mater., 2005, 25(4): 16
[11] 徐丽华, 徐向俊, 王艳丽等. 热处理对二次锻造高Nb-TiAl基合金组织的影响 [J]. 航空材料学报, 2005, 25(4): 16)
[12] LiuZ C. Research on the micro-alloying and the creep properties of high niobium containing TiAl alloys [D]. Beijing: University of Science and Technology Beijing, 2000
[12] 刘自成. 高铌TiAl合金成分及组织优化的研究 [D]. 北京: 北京科技大学, 2000
[13] WuX H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
[14] ImaevV M, ImaevR M, OlenevaT I , et al. Microstructure and mechanical properties of the intermetallic alloy Ti-45Al-6(Nb, Mo)-0.2B [J]. Phys. Met. Metallogr., 2008, 106: 641
[15] ImayevV, ImayevR, KhismatullinT , et al. Superplastic behavior of Ti-43Al-7(Nb, Mo)-0.2B alloy in the cast+heat-treated condition [J]. Scr. Mater., 2007, 57: 193
[16] LiH Z, ZhangJ. High temperature strength and ambient ductility dependences on Al contents of high Nb containing TiAl alloys [J]. Acta Metall. Sin., 2013, 49: 1423
[16] 李海昭, 张 继. Al含量对高Nb铸造TiAl合金高温强度和室温塑性的影响 [J]. 金属学报, 2013, 49: 1423
[17] LiH Z, ZhangJ. High Nb content TiAl alloys specified to cast process [A]. Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology [C]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2014: 93
[18] LeyensC, PetersM. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley-VCH, John Wiley, 2003: 333
[19] ZhangJ W, LiS Q, LiangX B , et al. Research and application of Ti3Al and Ti2AlNb based alloys [J]. Chin. J. Nonferrous Met., 2010, 20: 336
[19] 张建伟, 李世琼, 梁晓波等. Ti3Al和Ti2AlNb基合金的研究与应用 [J]. 中国有色金属学报, 2010, 20: 336
[20] KimY W. Gamma titanium aluminides: Their status and future [J]. JOM, 1995, 47(7): 39
[21] CaoC X, MaJ M, YanM G. The development of Ti3Al intermetallic alloys [J]. J. Mater. Eng., 1991, (2): 32
[21] 曹春晓, 马济民, 颜鸣皋. Ti3Al基合金的进展 [J]. 材料工程, 1991, (2): 32)
[22] TianW, ZhongY, LiangX B , et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49
[22] 田 伟, 钟 燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49)
[23] WangJ X. Research status and progress of Ni-Al based alloys as high temperature structural materials [J]. Chin. J. Rare Met., 2007, 31: 83
[23] 王敬欣. 镍铝基高温结构材料的研究进展 [J]. 稀有金属, 2007, 31: 83
[24] AokiK, IzumiO. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition [J]. J. Japan Inst. Met., 1979, 43: 1190
[25] LiH, LiF L, LiS S , et al. Influence of ageing treatments on stress rupture properties of Ni3Al-base single-crystal alloy IC21 at 850 ℃ [J]. Mater. Sci. Forum, 2013, 747-748: 659
[26] DaiP C, PengH, PeiY L , et al. Improvement in oxidation resistance of Ni3Al based single crystal superalloy IC32 by NiAlHfSi coating [J]. Mater. Sci. Forum, 2013, 747-748: 604
[27] RuY, AiC, LiS S , et al. Two-phase microstructural evolution at high temperatures for γ'-richen single crystal superalloys [J]. Mater. Res. Innovations, 2015, 19: S214
[28] LiW, ZhangZ G, ZhangH , et al. Influence of aging heat treatment on microstructure and hardness of single crystal Ni3Al-base superalloy IC21 [J]. Procedia Eng., 2012, 27: 1081
[29] LiangY F, LiS S, AiC , et al. Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 112
[30] CuiD L, XieX Y, LiS S , et al. Heat treatment of a Ni3Al-based single crystal alloy IC32 [J]. Mater. Sci. Forum, 2013, 747-748: 665
[31] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (Book 2) [M]. Beijing: China Quality and Standards Publishing, 2012: 727
[31] (中国金属学会高温材料分会. 中国高温合金手册(下卷) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 727)
[32] RuY, ZhangH, PeiY L , et al. Improved 1200 ℃ stress rupture property of single crystal superalloys by γ'-forming elements addition [J]. Scr. Mater., 2018, 147: 21
[33] ZhangH, LiangY F, RuY , et al. Effect of thermal exposure on the stress-rupture life and microstructure of a low Re-containing single crystal alloy [J]. Prog. Nat. Sci.: Mater. Int., 2015, 25: 84
[34] BaiJ Y. Effects of Ce and Dy on oxidation resistance of the IC21 superalloy [D]. Beijing: Beihang University, 2017
[34] 白洁莹. 稀土元素Ce与Dy对IC21单晶合金抗氧化性能的影响 [D]. 北京: 北京航空航天大学, 2017
[35] FengX J. Effect of trace Ce on high-temperature oxidation behavior of a Al-Si coated Ni-based single crystal superalloy [D]. Beijing: Beihang University, 2018
[35] 逄小娟. 微量Ce对Ni基单晶高温合金Al-Si涂层高温氧化性能的影响 [D]. 北京: 北京航空航天大学, 2018
[36] SikkaV K, MavityJ T, AndersonK. Processing of nickel aluminides and their industrial applications [J]. Mater. Sci. Eng., 1992, A153: 712
[37] SikkaV K, SantellaM L, OrthJ E. Processing and operating experience of Ni3Al-based intermetallic alloy IC-221M [J]. Mater. Sci. Eng., 1997, A239-240: 564
[38] SikkaV K, DeeviS C, ViswanathanS , et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermeta-llics, 2000, 8: 1329
[39] StoloffN S, LiuC T, DeeviS C. Emerging applications of intermetallics [J]. Intermetallics, 2000, 8: 1313
[40] TanY N, ZhaoX H, GuiZ L. Development and application of casting Ni3Al-based alloys (ВКНА series) in Russia [J]. Aviat. Maint. Eng., 1997, (5): 6
[40] 谭永宁, 赵希宏, 桂中楼. 俄罗斯ВКНА系列Ni3Al基合金的发展和应用 [J]. 航空工程与维修, 1997, (5): 6)
[41] FengD, LiS P, LuoH L , et al. Microstructure and properties of modified cast Ni3Al-Base MX246 alloys [J]. Acta Metall. Sin., 2002, 38: 1181
[41] 冯 涤, 李尚平, 骆合力等. 改性铸造Ni3Al基合金MX246组织与性能研究 [J]. 金属学报, 2002, 38: 1181
[42] WangL P, LuoH L, LiS P , et al. Effect of heat-treatment on microstructure and stress rupture of MX246A [J]. Foundry, 2007, 56: 395
[42] 汪龙平, 骆合力, 李尚平等. 热处理对MX246A合金显微组织和持久性能的影响 [J]. 铸造, 2007, 56: 395
[43] GuoH S, GuoX P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scr. Mater., 2011, 64: 637
[44] QiaoY Q, GuoX P, ZengY X. Study of the effects of Zr addition on the microstructure and properties of Nb-Ti-Si based ultrahigh temperature alloys [J]. Intermetallics, 2017, 88: 19
[45] ZhangS, GuoX P. Alloying effects on the microstructure and properties of Nb-Si based ultrahigh temperature alloys [J]. Intermeta-llics, 2016, 70: 33
[46] ZhouY. Effects of Ti, Al additions on microstructure and properties of Nb-Si based ultrahigh temperature alloys [D]. Xi'an: Northwestern Polytechnical University, 2019
[46] 周 央. Ti, Al含量对Nb-Si基超高温合金组织及性能的影响 [D]. 西安: 西北工业大学, 2019
[47] ChumarevV M, Leont'evL Y, UdoevaL Y , et al. Effect of boron and yttrium on the phase composition and the microstructure of natural Nb-Si composites [J]. Russ. Metall., 2014, 2014: 688
[48] BewlayB P, JacksonM R, LipsittH A. The Nb-Ti-Si ternary phase diagram: evaluation of liquid- solid phase equilibria in Nb-and Ti-rich alloys [J]. J. Phase Equilib., 1997, 18: 264
[49] ZhaoJ C, JacksonM R, PelusoL A. Determination of the Nb-Cr-Si phase diagram using diffusion multiples [J]. Acta Mater., 2003, 51: 6395
[50] ZhaoJ C, BewlayB P, JacksonM R. Determination of Nb-Hf-Si phase equilibria [J]. Intermetallics, 2001, 9: 681
[51] MaC L, LiJ G, TanY , et al. Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb-Mo-Si and Nb-W-Si systems [J]. Mater. Sci. Eng., 2004, A386: 375
[52] SunZ P, GuoX P, ZhangC. Liquid-solid phase equilibria in Nb-rich corner of the Nb-Ti-Si-B system [J]. J. Alloys Compd., 2012, 522: 149
[53] ChanK S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites [J]. Mater. Sci. Eng., 2002, A329-331: 513
[54] ZhangS, GuoX P. Effects of Cr and Hf additions on the microstructure and properties of Nb silicide based ultrahigh temperature alloys [J]. Mater. Sci. Eng., 2015, A638: 121
[55] ShaoG. Thermodynamic assessment of the Nb-Si-Al system [J]. Intermetallics, 2004, 12: 655
[56] SunZ P, YangY, GuoX P , et al. Thermodynamic modeling of the Nb-rich corner in the Nb-Si-B system [J]. Intermetallics, 2011, 19: 26
[57] SunZ P, GuoX P, ZhangC. Thermodynamic modeling of the Nb-rich corner in the Nb-Si-Sn system [J]. Calphad, 2012, 36: 82
[58] YangY, BewlayB P, ChangY A. Liquid-solid phase equilibria in metal-rich Nb-Ti-Hf-Si alloys [J]. J. Phase Equilib. Diff., 2007, 28: 107
[59] ShengL Y. Microstructure evolution and mechanical properties of a directionally solidified Nb-Ti-Si-Cr-Al-Hf-Dy alloy [C]. MATEC Web Conf., 2016, 67: 03007
[60] GuoB H, GuoX P. Effect of withdrawal rates on microstructures and room temperature fracture toughness in a directionally solidified Nb-Ti-Cr-Si based alloy [J]. Mater. Sci. Eng., 2014, A617: 39
[61] BewlayB P, LewandowksiJ J, JacksonM R. Refractory metal-intermetallic in-situ composites for aircraft engines [J]. JOM, 1997, 49(8): 44
[62] GuanP, GuoX P, DingX , et al. Directionally solidified microstructure of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2004, 17: 450
[63] HuangQ, GuoX P, KangY W , et al. Microstructures and mechanical properties of directionally solidified multi-element Nb-Si alloy [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 146
[64] TianY X, GuoJ T, ChengG M , et al. Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy [J]. Mater. Des., 2009, 30: 2274
[65] KimW Y, TanakaH, KasamaA , et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites [J]. Intermetallics, 2001, 9: 827
[66] ZhangP. Microstructures and oxidation resistance of Si-Al-Y diffusion coatings on Nb-Si based alloys [D]. Xi'an: Northwestern Polytechnical University, 2014
[66] 张 平. Nb-Si基合金Si-Al-Y扩散渗层的组织及抗氧化性能 [D]. 西安: 西北工业大学, 2014
[67] SunJ, LiT, ZhangG P , et al. Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range [J]. J. Alloys Compd., 2019, 790: 1014
[68] WangW, ZhouC G. Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy [J]. Corros. Sci., 2016, 110: 114
[69] MajumdarS, SenguptaP, KaleG B , et al. Development of multilayer oxidation resistant coatings on niobium and tantalum [J]. Surf. Coat. Technol., 2006, 200: 3713
[70] CockeramB V. Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method [J]. Surf. Coat. Technol., 1995, 76-77: 20
[71] HeJ H, GuoX P, QiaoY Q. Effect of Zr content on the structure and oxidation resistance of silicide coatings prepared by pack cementation technique [J]. Corros. Sci., 2019, 147: 152
[72] YaoD Z, YangJ Y, GongW Y , et al. Interdiffusion behavior between Nb and MoSi2 intermetallic compound [J]. Mater. Sci. Eng., 2010, A527: 6787
[73] GaoY, GuoX P, QiaoY Q , et al. Electrodeposition of Mo/Re duplex layer and preparation of MoSi2/ReSi2/NbSi2 compound coating on Nb-Ti-Si based alloy [J]. Corros. Sci., 2019, 153: 283
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!