Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy
Suigeng DU(),Man GAO,Wanting XU,Xifeng WANG
Key Laboratory of Ministry of Education for Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article:
Suigeng DU,Man GAO,Wanting XU,Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy. Acta Metall Sin, 2019, 55(7): 885-892.
As a solid-state welding technology, linear friction welding has unique advantages in machining dissimilar titanium alloy blade disc. However, there still lacks sufficient support in basic applied research, and the mechanism of interface formation is still under study. In this work, the microstructure of the welded joint between TC11 and TC17 titanium alloys was analyzed by OM, SEM and TEM, respectively. The results showed that common grains and common grain boundaries are formed at the weld interface. In the common grain, a phase boundary is formed in the weld interface. Elements diffusion is observed on both sides of the common grain boundary and the phase boundary in the common grain. Under the action of rejection, adsorption and towing of solute elements in the formation of common grains and common grain boundary, the observed diffusion distance of elements in the phase boundary of the common grain is longer than the one in the common grain boundary. The composition change at the phase boundary of the weld zone is greater than the one inside the phase. A large number of small needle-like α phases are formed at the weld interface that has a large number of deformed twins. The structure of the interface in common grains consists of two interfaces (recrystallization growth interfaces of both sides) and two growth regions (ordered and disordered). The dynamic recrystallization also has an ordered and disordered crystallization process similar to that of solidification crystallization.
Fig.3 SEM images of welded interface (a, d), common grain (b) and common grain boundary (c), and line scan fitting results of line A (e) and line B (f)
Fig.4 TEM images and corresponding selected area electron diffraction (SAED) patterns in TC11 side (a~d) and TC17 side (e) (a) TEM image of TMAZ in TC11 side(b) enlarged image of Fig.4a (Inset shows the SAED pattern)(c) TEM image of WZ in TC11 side(d) SAED pattern of Fig.4c(e) TEM image of WZ in TC17 side (Inset shows the SAED pattern of area A)
Fig.5 TEM images of bright field (a), dark field (b), magnified image (c) and line scan result (d) in the interface
Fig.6 HRTEM images (a, b, e, f) of Fig.5c and fast Fourier transformation (FFT) of area C (c) and area D (d)
[1]
Zhang H Y, Zhang L F. Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad [J]. Aero. Manuf. Technol., 2013, (23-24): 38
Li W Y, Ma T, Zhang Y, et al. Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy [J]. Adv. Eng. Mater., 2008, 10: 89
[6]
Li W Y, Ma T J, Yang S Q. Microstructure evolution and mechanical properties of linear friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) titanium alloy joints [J]. Adv. Eng. Mater., 2010, 12: 35
[7]
Ji Y J, Zhang T C, Li X H, et al. Micro-area characteristic analysis of TC11/TC17 linear friction welding flash and weld [J]. Aero. Manuf. Technol., 2015, (11): 62
Zhao P K, Fu L, Chen H Y. Low cycle fatigue properties of linear friction welded joint of TC11 and TC17 titanium alloys [J]. J. Alloys Compd., 2016, 675: 248
[9]
Zhao P K, Fu L. Strain hardening behavior of linear friction welded joints between TC11 and TC17 dissimilar titanium alloys [J]. Mater. Sci. Eng., 2015, A621: 149
[10]
Dalgaard E, Wanjara P, Gholipour J, et al. Linear friction welding of a near-β titanium alloy [J]. Acta Mater., 2012, 60: 770
[11]
Li W Y, Suo J D, Ma T J, et al. Abnormal microstructure in the weld zone of linear friction welded Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy joint and its influence on joint properties [J]. Mater. Sci. Eng., 2014, A599: 38
[12]
Guo Y N, Attallah M M, Chiu Y, et al. Spatial variation of microtexture in linear friction welded Ti-6Al-4V [J]. Mater. Charact., 2017, 127: 342
[13]
Karadge M, Preuss M, Lovell C, et al. Texture development in Ti-6Al-4V linear friction welds [J]. Mater. Sci. Eng., 2007, A459: 182
[14]
Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships [J]. Metall. Mater. Trans., 2005, 36A: 2149
[15]
Turner R, Gebelin J C, Ward R M, et al. Linear friction welding of Ti-6Al-4V: Modelling and validation [J]. Acta Mater., 2011, 59: 3792
[16]
Zhang C C, Zhang T C, Ji Y J, et al. Formation process and mechanism of linear friction welding joint [J]. J. Mater. Eng., 2015, 43(11): 39
Lang B, Zhang T C, Tao J, et al. Microstructure in linear friction welded dissimillar titanium alloy joint [J]. Trans. China Weld. Inst., 2012, 33(7): 105
Lang B, Zhang T C, Li X H, et al. Microstructural evolution of a TC11 titanium alloy during linear friction welding [J]. J. Mater. Sci., 2010, 45: 6218
[20]
Wen G D, Ma T J, Li W Y, et al. Cyclic deformation behavior of linear friction welded Ti6Al4V joints [J]. Mater. Sci. Eng., 2014, A597: 408
[21]
Ma T J, Tang L F, Li W Y, et al. Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies [J]. J. Manuf. Processes, 2018, 34: 442
[22]
Ma T J, Chen T, Li W Y, et al. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation [J]. Mater. Charact., 2011, 62: 130
[23]
Chen Y. Study on the microstructure of TC4 joints welded by linear friction welding [D]. Dalian: Dalian Jiaotong University, 2012
[23]
(陈 燕. TC4钛合金线性摩擦焊接头组织结构分析 [D]. 大连: 大连交通大学, 2012)
[24]
Wang X Y, Li W Y, Ma T J. Research status of microstructure of linear friction welded titanium alloy [J]. Aero. Manuf. Technol., 2015, (20): 56
Editiorial Committee of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook (Book 4) [M]. 2nd Ed., Beijing: China Standard Press, 2002: 152