Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (7): 885-892    DOI: 10.11900/0412.1961.2018.00512
Current Issue | Archive | Adv Search |
Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy
Suigeng DU(),Man GAO,Wanting XU,Xifeng WANG
Key Laboratory of Ministry of Education for Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(22210KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a solid-state welding technology, linear friction welding has unique advantages in machining dissimilar titanium alloy blade disc. However, there still lacks sufficient support in basic applied research, and the mechanism of interface formation is still under study. In this work, the microstructure of the welded joint between TC11 and TC17 titanium alloys was analyzed by OM, SEM and TEM, respectively. The results showed that common grains and common grain boundaries are formed at the weld interface. In the common grain, a phase boundary is formed in the weld interface. Elements diffusion is observed on both sides of the common grain boundary and the phase boundary in the common grain. Under the action of rejection, adsorption and towing of solute elements in the formation of common grains and common grain boundary, the observed diffusion distance of elements in the phase boundary of the common grain is longer than the one in the common grain boundary. The composition change at the phase boundary of the weld zone is greater than the one inside the phase. A large number of small needle-like α phases are formed at the weld interface that has a large number of deformed twins. The structure of the interface in common grains consists of two interfaces (recrystallization growth interfaces of both sides) and two growth regions (ordered and disordered). The dynamic recrystallization also has an ordered and disordered crystallization process similar to that of solidification crystallization.

Key words:  titanium alloy      linear friction welding      weld interface     
Received:  13 November 2018     
ZTFLH:  TG457  
Fund: National Natural Science Foundation of China(Nos.51675434);National Natural Science Foundation of China(10477017)
Corresponding Authors:  Suigeng DU     E-mail:  fwcenter@nwpu.edu.cn

Cite this article: 

Suigeng DU,Man GAO,Wanting XU,Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy. Acta Metall Sin, 2019, 55(7): 885-892.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00512     OR     https://www.ams.org.cn/EN/Y2019/V55/I7/885

Fig.1  Microstructures of TC11 (a) and TC17 (b) alloys
Fig.2  Macromorphology of welded joint (WZ—weld zone, TMAZ—thermal mechanical affected zone)
Fig.3  SEM images of welded interface (a, d), common grain (b) and common grain boundary (c), and line scan fitting results of line A (e) and line B (f)
Fig.4  TEM images and corresponding selected area electron diffraction (SAED) patterns in TC11 side (a~d) and TC17 side (e) (a) TEM image of TMAZ in TC11 side(b) enlarged image of Fig.4a (Inset shows the SAED pattern)(c) TEM image of WZ in TC11 side(d) SAED pattern of Fig.4c(e) TEM image of WZ in TC17 side (Inset shows the SAED pattern of area A)
Fig.5  TEM images of bright field (a), dark field (b), magnified image (c) and line scan result (d) in the interface
Fig.6  HRTEM images (a, b, e, f) of Fig.5c and fast Fourier transformation (FFT) of area C (c) and area D (d)
[1] Zhang H Y, Zhang L F. Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad [J]. Aero. Manuf. Technol., 2013, (23-24): 38
[1] (张海艳, 张连锋. 航空发动机整体叶盘制造技术国内外发展概述 [J]. 航空制造技术, 2013, (23-24): 38)
[2] Han X F, Zhang L, Qian L Y. Application of solid state welding in civil aircraft aeroengine [J]. Aero. Manuf. Technol., 2012, (13): 55
[2] (韩秀峰, 张 露, 钱凌翼. 固态焊接在民用航空发动机中的应用 [J]. 航空制造技术, 2012, (13): 55)
[3] Chen L, Li W Y, Ma T J. The state-of-the-art and perspectives of linear friction welding technology [J]. Adv. Aero. Sci. Eng., 2010, 1: 178
[3] (陈 亮, 李文亚, 马铁军等. 线性摩擦焊接技术研究进展与展望 [J]. 航空工程进展, 2010, 1: 178)
[4] Su Y, Li W Y, Wang X Y, et al. Linear friction welding of titanium alloys: State-of-the-art and perspectives [J]. Mater. China, 2017, 36: 852
[4] (苏 宇, 李文亚, 王新宇等. 钛合金线性摩擦焊研究现状及展望 [J]. 中国材料进展, 2017, 36: 852)
[5] Li W Y, Ma T, Zhang Y, et al. Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy [J]. Adv. Eng. Mater., 2008, 10: 89
[6] Li W Y, Ma T J, Yang S Q. Microstructure evolution and mechanical properties of linear friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) titanium alloy joints [J]. Adv. Eng. Mater., 2010, 12: 35
[7] Ji Y J, Zhang T C, Li X H, et al. Micro-area characteristic analysis of TC11/TC17 linear friction welding flash and weld [J]. Aero. Manuf. Technol., 2015, (11): 62
[7] (季亚娟, 张田仓, 李晓红等. TC11/TC17线性摩擦焊飞边及焊缝微区特征分析 [J]. 航空制造技术2015, (11): 62)
[8] Zhao P K, Fu L, Chen H Y. Low cycle fatigue properties of linear friction welded joint of TC11 and TC17 titanium alloys [J]. J. Alloys Compd., 2016, 675: 248
[9] Zhao P K, Fu L. Strain hardening behavior of linear friction welded joints between TC11 and TC17 dissimilar titanium alloys [J]. Mater. Sci. Eng., 2015, A621: 149
[10] Dalgaard E, Wanjara P, Gholipour J, et al. Linear friction welding of a near-β titanium alloy [J]. Acta Mater., 2012, 60: 770
[11] Li W Y, Suo J D, Ma T J, et al. Abnormal microstructure in the weld zone of linear friction welded Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy joint and its influence on joint properties [J]. Mater. Sci. Eng., 2014, A599: 38
[12] Guo Y N, Attallah M M, Chiu Y, et al. Spatial variation of microtexture in linear friction welded Ti-6Al-4V [J]. Mater. Charact., 2017, 127: 342
[13] Karadge M, Preuss M, Lovell C, et al. Texture development in Ti-6Al-4V linear friction welds [J]. Mater. Sci. Eng., 2007, A459: 182
[14] Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships [J]. Metall. Mater. Trans., 2005, 36A: 2149
[15] Turner R, Gebelin J C, Ward R M, et al. Linear friction welding of Ti-6Al-4V: Modelling and validation [J]. Acta Mater., 2011, 59: 3792
[16] Zhang C C, Zhang T C, Ji Y J, et al. Formation process and mechanism of linear friction welding joint [J]. J. Mater. Eng., 2015, 43(11): 39
[16] (张传臣, 张田仓, 季亚娟等. 线性摩擦焊接头形成过程及机理 [J]. 材料工程, 2015, 43(11): 39)
[17] Lang B, Zhang T C, Tao J, et al. Microstructure in linear friction welded dissimillar titanium alloy joint [J]. Trans. China Weld. Inst., 2012, 33(7): 105
[17] (郎 波, 张田仓, 陶 军等. 异质钛合金线性摩擦焊接头微观组织 [J]. 焊接学报, 2012, 33(7): 105)
[18] Lang B, Zhang T C, Tao J, et al. Formation mechanism of linear friction welded titanium alloy joint [J]. Trans. China Weld. Inst., 2012, 35(9): 37
[18] (郎 波, 张田仓, 陶 军等. 钛合金线性摩擦焊接头形成机制 [J]. 焊接学报, 2014, 35(9): 37)
[19] Lang B, Zhang T C, Li X H, et al. Microstructural evolution of a TC11 titanium alloy during linear friction welding [J]. J. Mater. Sci., 2010, 45: 6218
[20] Wen G D, Ma T J, Li W Y, et al. Cyclic deformation behavior of linear friction welded Ti6Al4V joints [J]. Mater. Sci. Eng., 2014, A597: 408
[21] Ma T J, Tang L F, Li W Y, et al. Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies [J]. J. Manuf. Processes, 2018, 34: 442
[22] Ma T J, Chen T, Li W Y, et al. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation [J]. Mater. Charact., 2011, 62: 130
[23] Chen Y. Study on the microstructure of TC4 joints welded by linear friction welding [D]. Dalian: Dalian Jiaotong University, 2012
[23] (陈 燕. TC4钛合金线性摩擦焊接头组织结构分析 [D]. 大连: 大连交通大学, 2012)
[24] Wang X Y, Li W Y, Ma T J. Research status of microstructure of linear friction welded titanium alloy [J]. Aero. Manuf. Technol., 2015, (20): 56
[24] (王新宇, 李文亚, 马铁军. 钛合金线性摩擦焊接界面组织研究现状 [J]. 航空制造技术, 2015, (20): 56)
[25] Editiorial Committee of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook (Book 4) [M]. 2nd Ed., Beijing: China Standard Press, 2002: 152
[25] (《中国航空材料手册》编辑委员会. 中国航空材料手册(第4卷) [M]. 第2版. 北京: 中国标准出版社, 2002: 152)
[1] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[2] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[3] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[4] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[5] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[6] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[7] HE Bo, XING Meng, YANG Guang, XING Fei, LIU Xiangyu. Effect of Composition Gradient on Microstructure and Properties of Laser Deposition TC4/TC11 Interface[J]. 金属学报, 2019, 55(10): 1251-1259.
[8] Xiaohua MIN, Li XIANG, Mingjia LI, Kai YAO, Satoshi EMURA, Congqian CHENG, Koichi TSUCHIYA. Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents[J]. 金属学报, 2018, 54(9): 1262-1272.
[9] Yanmo LI, Chenxi LIU, Liming YU, Huijun LI, Zumin WANG, Yongchang LIU, Wenya LI. Effect of High-Temperature Ageing on Microstructure and Mechanical Properties of Linear Friction Welded S31042 Steel Joint[J]. 金属学报, 2018, 54(7): 981-990.
[10] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[11] Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder[J]. 金属学报, 2018, 54(11): 1537-1552.
[12] Heng SHAO, Yan LI, Hai NAN, Qingyan XU. Numerical Simulation of Microstructure Evolution During the Solid Phase Transformation of Ti-6Al-4V Alloy in Investment Casting[J]. 金属学报, 2017, 53(9): 1140-1152.
[13] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[14] Guohuai LIU, Tianrui LI, Mang XU, Tianliang FU, Yong LI, Zhaodong WANG, Guodong WANG. Microstructural Evolution and Mechanical Properties of TC4 Titanium Alloy During Acculative Roll Bonding Process[J]. 金属学报, 2017, 53(9): 1038-1046.
[15] Limei KANG,Chao YANG,Yuanyuan LI. Fabrication of Novel Bimodal Titanium Alloy with High-Strength and Large-Ductility by Semi-Solid Sintering[J]. 金属学报, 2017, 53(4): 440-446.
No Suggested Reading articles found!