Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (6): 831-843    DOI: 10.11900/0412.1961.2018.00071
Orginal Article Current Issue | Archive | Adv Search |
Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials
Tao ZHANG1(), Wei YAN2, Zhuoming XIE1, Shu MIAO1, Junfeng YANG1, Xianping WANG1, Qianfeng FANG1, Changsong LIU1
1 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2 Experiment Center of Anhui San Lian University, Hefei 230031, China
Cite this article: 

Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials. Acta Metall Sin, 2018, 54(6): 831-843.

Download:  HTML  PDF(9834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tungsten (W) plays an important role in the defense industry, aerospace and nuclear industry due to its excellent properties such as high melting point (3410 ℃), high density (19.35 g/cm3), high hardness, high elastic modulus, high thermal conductivity, low expansion coefficient and low vapor pressure. However, its disadvantages, such as low temperature brittleness (ductile brittle transition temperature usually above 400 ℃), low tensile strength, recrystallization embrittlement, high thermal load induced cracking and irradiation embrittlement, affected seriously its processing and servicing performance. Focusing on these problems, carbides/oxide dispersion strengthened W alloys were studied widely. The mechanical properties and other service properties of W were significantly improved by nano scale carbide/oxide dispersion strengthening and microstructure optimization. This article mainly reviews carbide and oxide dispersion strengthening design and the corresponding W-based materials preparation, microstructure and properties of regulation and service performance evaluation, introduces the latest progress of the research and development of the authors' team, and looks forward to the future development trend and the problems to be solved.

Key words:  tungsten alloy      carbide/oxide dispersion strengthening      mechanical property      thermal shock resistance      irradiation resistance     
Received:  28 February 2018     
ZTFLH:  TG146.1  
  TF841.1  
Fund: Supported by National Key Research and Development Program of China (No.2017YFA0402800), National Magnetic Confinement Fusion Program (No.2015GB112000) and National Natural Science Foundation of China (Nos.11735015, 11575241 and 51771184)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00071     OR     https://www.ams.org.cn/EN/Y2018/V54/I6/831

Specimen UTS (MPa) / TE (%)
RT 100 ℃ 200 ℃ 400 ℃ Ref.
Forged W-Y2O3 480/0 1040/2.9 948/5.5 667/17.8 [17]
Swaged W-Y2O3 482/0 658/1.6 (150 ℃) 842/6.4 480/16 [18,19]
SPSed W-Y2O3 - - - 436/6.4 [16]
Forged W-Y2O3 - - - 490/8.0 [13]
Rolled W-Y2O3 - - 846/6.4 - [20]
Rolled W-Y2O3 620/0 700/0 820/7.0 520/17 [21]
Rolled W-Zr-Y2O3 790/0 798/0 880/8.0 650/26 [21]
911/3.2 (150 ℃)
Table 1  Tensile properties at room temperature (RT) ~400 ℃ of different W-Y2O3 materials[13,16~21]
Fig.1  The distributions of second phase particles in W-Y2O3 (a~c) and W-Zr-Y2O3 (d~f)[21]
Fig.2  Engineering stress-strain curves of W-TiC plates as rolled and annealed for 1 h at 1400, 1500 and 1600 ℃[29]
Fig.3  The combination energy of Zr—C, Zr—N and Zr—O in W matrix (1X, 2X and 3X represent the nearest-neighbor, sub-neighbor atom and third-neighbor atoms, respectively)
Specimen UTS (MPa) / TE (%)
400 ℃ 500 ℃ 600 ℃ 700 ℃
W - - 209*/- 348/11.6±0.4
W-0.2%ZrC - 457*/- 455/27.6±0.4 419/30.0±0.4
W-0.5%ZrC - 572*/- 588/17.6±0.4 535/24.8±0.4
W-1.0%ZrC - 667*/- 798/8.4±0.4 731/10.4±0.4
Table 2  Tensile properties at different temperatures of W-ZrC prepared by SPS with different compositions[36]
Fig.4  Tensile curves of W-0.5%ZrC rod (a) and patch with 1 mm thickness (b)[40] at different temperatures (DBTT—ductile-brittle transition temperature)
Fig.5  Three point bending curves (a) and tensile curves (b) of W-0.5%ZrC at different temperatures[39]
W material Technology DBTT / K Test method Ref.
W-0.5ZrC (R-R-WZC) (8.5 mm thick plate) Rolling 373 3PB [30]
W-2Y2O3 (S-WY) (2 mm thick, ?95 mm) Hot Forging 473 3PB [34]
Pure W (Rolled W) (10 mm thick plate) Rolling 473 3PB [33]
Pure W (HIPed W) (4 mm thick) HIP 473 3PB [33]
W-0.2TiC (1 mm thick) Forging+Rolling 440 3PB [9]
W-0.25Ti-0.05C (1 mm thick plate) Rolling 260 3PB [9]
W-1%Y2O3 Injection molding 1273 Charpy [11]
Pure W Injection molding 1173 Charpy [11]
W-0.5TiC HIP+Forging 484 3PB [35]
WL10 (W-1%La2O3) Swaging+Rolling 973 Charpy [36]
Pure W (0.1 mm thick foil) Rolling+Joinning 373 Charpy [37]
Table 3  The DBTT of R-R-WZC alloys in comparison with other W materials[9,11,30,33~37]
Fig.6  Tensile stress-strain curves of W (a~d) and W-ZrC (a1~d1) as rolled and annealed at different temperatures[41]
Fig.7  Distribution of grain/particle sizes (d) and microstructures of W-0.5%ZrC[39]
(a) high magnification BSESEM image showing the W grains possess equiaxed structure. The black contrast dots correspond to the second phase particles (b) grain size distribution of W grain size(c) grain size distribution of ZrC particle inside W grain(d) grain size distribution of ZrC and W-ZrC-C-O particles at grain boundary (GBs—grain boundaries)
Fig.8  Interface relationships between W matrix and ZrC in W-0.5%ZrC[39]
(a) HRTEM image of W matrix and ZrC phase (intragranular) as viewed along [001](b) the SAEDP revealing the particle with a face centered cubic structure(c) fast Fourier transform (FFT) pattern of selected red square area A on ZrC in Fig.8a(d) FFT pattern of selected red square area B in Fig.8a at the interface area between W and ZrC. It is clear that the particle-matrix phase boundaries have coherent structure like showing in high magnification of Fig.8e
Fig.9  Temperature dependence of thermal conductivity of as rolled and annealed W-0.5%ZrC at different temperatures, ITER grade W and nano grained W-TiC[45]
Fig.10  Surface morphologies of W-ZrC material thermal shocked by transient electron beam with different energies[39]
Fig.11  The surface and cross-section (inset) morphologies of different W materials after 220 eV He+ irradiation at 900 ℃ (a~c) and 620 eV He+ irradiation at 1000 ℃ (d~f)[44]
(a, d) powder metallurgy (PM) W (b, e) chemical vopor deposition (CVD) W (c) W-1%Y2O3 (f) W-0.5%ZrC
Exp. condition Tested material Surface morphology Thickness of modified
layer / nm
He+ energy 220 eV PM-W Pin hole structure About 150
Flux: about 1.4×1026 m-2s-1 CVD-W Pin hole structure About 180
Total fluence: 1×1026 atomsm-2 W-1%Y2O3 Pin hole structure About 120
Sample temperature: (900±100) ℃ W-1%Y2O3 Pin hole structure About 80
W-1%La2O3 About 100
W-0.5%ZrC About 75
He+ energy: 620 eV PM-W Coral-like structure About 200
Flux: about 1.4×1026 m-2s-1 CVD-W Coral-like structure About 175
Total fluence: 1×1026 atomsm-2
W-1%Y2O3 Coral-like structure About 220
Sample temperature: (1000±100) ℃
W-1%Y2O3 Coral-like structure About 140
W-1%La2O3 Coral-like structure About 200
W-0.5%ZrC Pin hole structure About 120
Table 4  Summary of low-energy and high-flux He ion irradiation for different W materials[44]
Fig.12  The tensile curves of W-Ta-C (a) and W-TaC (b) at different temperatures[48]
Fig.13  Temperature dependence of UTS of different W based materials[49]
Fig.14  Surface morphologies of different W materials after flux 5×1021 ions/(m2s), fluence 7.02×1025 ions/m2, 90 eV D+ and 200 ℃ irradiation
[1] Wurster S, Baluc N, Battabyal M.Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials[J]. J. Nucl. Mater., 2013, 442: S181
[2] Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209
[3] Wesemann I, Spielmann W, Heel P, et al.Fracture strength and microstructure of ODS tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 687
[4] Ueda Y, Schmid K, Balden M, et al.Baseline high heat flux and plasma facing materials for fusion[J]. Nucl. Fusion, 2017, 57: 092006
[5] Li X Y, Liu W, Xu Y C, et al.Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries[J]. Acta Mater., 2016, 109: 115
[6] Li X Y, Liu W, Xu Y C, et al.Energetic and kinetic behaviors of small vacancy clusters near a symmetric Σ5 (310)/[001] tilt grain boundary in bcc Fe[J]. J. Nucl. Mater., 2013, 440: 250
[7] Kim Y, Lee K H, Kim E P, et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 842
[8] Kim Y, Hong M H, Lee S H, et al.The effect of yttrium oxide on the sintering behavior and hardness of tungsten[J]. Met. Mater. Int., 2006, 12: 245
[9] Aguirre M V, Martín A, Pastor J Y, et al.Mechanical properties of Y2O3-doped W-Ti alloys[J]. J. Nucl. Mater., 2010, 404: 203
[10] Vieider G, Merola M, Bonal J P, et al.European development of the ITER divertor target[J]. Fusion Eng. Des., 1999, 46: 221
[11] Yar M A, Wahlberg S, Bergqvist H, et al.Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization[J]. J. Nucl. Mater., 2011, 412: 227
[12] Battabyal M, Sch?ublin R, Sp?tig P, et al.W-2wt.%Y2O3 composite: Microstructure and mechanical properties[J]. Mater. Sci. Eng., 2012, A538: 53
[13] Battabyal M, Sch?ublin R, Sp?tig P, et al.Microstructure and mechanical properties of a W-2wt.%Y2O3 composite produced by sintering and hot forging[J]. J. Nucl. Mater., 2013, 442: S225
[14] Battabyal M, Sp?tig P, Baluc N.Effect of ion-irradiation on the microstructure and microhardness of the W-2Y2O3 composite materials fabricated by sintering and hot forging[J]. Fusion Eng. Des., 2013, 88: 1668
[15] Dong Z, Liu N, Ma Z Q, et al.Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy[J]. Int. J. Refr. Met. Hard Mater., 2017, 69: 266
[16] Tan X Y, Luo L M, Chen H Y, et al.Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Sci. Rep., 2015, 512: 755
[17] Lian Y Y, Liu X, Feng F, et al, Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging[J]. Phys. Scr., 2017, (T170): 014044
[18] Xie Z M, Liu R, Miao S, et al.Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3[J]. J. Nucl. Mater., 2015, 464: 193
[19] Liu R, Xie Z M, Fang Q F, et al.Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method[J]. J. Alloys Compd., 2016, 657: 73
[20] Zhao M Y, Zhou Z J, Zhong M, et al.Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies[J]. J. Nucl. Mater., 2016, 470: 236
[21] Xie Z M, Liu R, Zhang T, et al.Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure[J]. Mater. Des., 2016, 107: 144
[22] Kurishita H, Kobayashi S, Nakai K.Development of ultra-fine grained W-(0.25-0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations[J]. J. Nucl. Mater., 2008, 377: 34
[23] Kurishita H, Arakawa H, Matsuo S, et al.Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement[J]. Mater. Trans., 2013, 54: 456
[24] Kurishita H, Matsuo S, Arakawa H, et al.Current status of nanostructured tungsten-based materials development[J]. Phys. Scr., 2014, 159: 014032
[25] Ishijima Y, Kannari S, Kurishita H, et al.Processing of fine-grained W materials without detrimental phases and their mechanical properties at 200-432 K[J]. Mater. Sci. Eng., 2008, A473: 7
[26] Zhong F L, Yu F W, Chen J L.W-TiC alloy plasma facing materials and heat flux performance test under electron beam facility[J]. Rare Met. Mater. Eng., 2010, 39: 3(种法力, 于福文, 陈俊凌. W-TiC合金面对等离子体材料及其电子束热负荷实验研究[J]. 稀有金属材料与工程, 2010, 39: 3)
[27] Yan Q Z, Zhang X F, Wang T N, et al.Effect of hot working process on the mechanical properties of tungsten materials[J]. J. Nucl. Mater., 2013, 442(suppl.1): S233
[28] Lang S T, Yan Q Z, Sun N B, et al.Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method[J]. Fusion Eng. Des., 2017, 121: 366
[29] Miao S, Xie Z M, Zhang T, et al.Mechanical properties and thermal stability of rolled W-0.5wt% TiC alloys[J]. Mater. Sci. Eng., 2016, A671: 87
[30] Ueda Y, Oya M, Hamaji Y, et al.Surface erosion and modification of toughened, fine-grained, recrystallized tungsten exposed to TEXTOR edge plasma[J]. Phys. Scr., 2014, 159: 014038.
[31] Oya M, Lee H T, Ohtsuka Y, et al.Deuterium retention in various toughened, fine-grained recrystallized tungsten materials under different irradiation conditions[J]. Phys. Scr., 2014, 159: 014048
[32] Roosta M, Baharvandi H.The change occurred in W/ZrC composite properties by using nano reactants[J]. Int. J. Refract. Met. Hard Mater., 2013, 37: 29
[33] Zhang T Q, Wang Y J, Zhou Y, et al.Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrCp/W composites[J]. Mater. Sci. Eng., 2010, A527: 4021
[34] Li P F, Fan J L, Zhang M, et al.Effect of sintering temperature on properties and microstructure of tungsten composites reinforced by ZrC-Y2O3 particles[J]. Chin. J. Nonferrous Met., 2016, 26: 1952(李鹏飞, 范景莲, 章曼等. 烧结温度对ZrC-Y2O3复合增强细晶钨组织与性能的影响[J]. 中国有色金属学报, 2016, 26: 1952)
[35] Fan J L, Han Y, Li P F, et al.Micro/nano composited tungsten material and its high thermal loading behavior[J]. J. Nucl. Mater., 2014, 455: 717
[36] Xie Z M, Liu R, Fang Q F, et al.Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method[J]. Plasma Sci. Technol., 2015, 17: 1066
[37] Xie Z M, Zhang T, Liu R, et al.Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 180
[38] Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209
[39] Xie Z M, Liu R, Miao S, et al.Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature[J]. Sci. Rep., 2015, 5: 16014
[40] Ding H L, Xie Z M, Fang Q F, et al.Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique[J]. Mater. Sci. Eng., 2018, A716: 268
[41] Deng H W, Xie Z M, Wang Y K, et al.Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology[J]. Mater. Sci. Eng., 2018, A715: 117
[42] Pintsuk G, Kurishita H, Linke J, et al.Thermal shock response of fine-and ultra-fine-grained tungsten-based materials[J]. Phys. Scr., 2011, T145: 014060
[43] Zhang X, Yan Q.The thermal crack characteristics of rolled tungsten in different orientations[J]. J. Nucl. Mater., 2014, 444: 428
[44] Liu X, Lian Y Y, Greuner H, et al.Irradiation effects of hydrogen and helium plasma on different grade tungsten materials[J]. Nucl. Mater. Energy, 2017, 12: 1134
[45] Xie Z M, Miao S, Liu R, et al.Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 496: 41
[46] Miao S, Xie Z M, Zeng L F, et al.The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W-0.5 wt.%Ta-0.01 wt.%C alloy[J]. Fusion Eng. Des., 2017, 125: 490
[47] Miao S, Xie Z M, Zeng L F, et al.Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process[J]. Nucl. Mater. Energy, 2017, 13: 12
[48] Xie Z M, Miao S, Zhang T, et al.Recrystallization behavior and thermal shock resistance of the W-1.0wt% TaC alloy[J]. J. Nucl. Mater., 2018, 501: 282
[49] Wang Y K, Miao S, Xie Z M, et al.Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 492: 260
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!