Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 428-434    DOI: 10.11900/0412.1961.2017.00208
Orginal Article Current Issue | Archive | Adv Search |
Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu
Zhao CHENG1,2, Shuai JIN1, Lei LU1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Zhao CHENG, Shuai JIN, Lei LU. Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu. Acta Metall Sin, 2018, 54(3): 428-434.

Download:  HTML  PDF(2973KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanotwinned (NT) metals are promising structural materials due to their excellent combination of strength and ductility. These superior properties are strongly dependent on the microstructures i.e. the twin length (grain size), the twin thickness and the twin orientation. Understanding the synthesis process and growth mechanism of NT metals is essential for their structure design. In this work, the effect of electrolyte temperature on the microstructures of highly oriented NT Cu samples, including twin thickness and twin length (grain size), are systematically studied. The NT Cu samples were prepared by means of the direct-current electrodeposition at 293, 298, 303, 308 and 313 K, respectively, while other deposition parameters such as current density, concentration of additive and pH value were kept constant. With decreasing the temperature from 313 K to 293 K, the average grain size decreases from 27.6 μm to 2.8 μm and the average twin thickness decreases from 111 nm to 28 nm, which results in an increment of hardness from 0.7 GPa to 1.5 GPa. This is because with decreasing the temperature, the overpotential of cathode for depositing metal elevates, leading to the nucleation rate of both the grain and twin enhanced.

Key words:  direct-current electrodeposition      nanotwinned Cu      electrolyte temperature      cathode overpotential      microstructure     
Received:  01 June 2017     
Fund: Supported by National Natural Science Foundation of China (Nos.51420105001, 51371171, 51471172 and 51401211) and Key Research Program of Frontier Sciences, Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00208     OR     https://www.ams.org.cn/EN/Y2018/V54/I3/428

Fig.1  Cross-sectional SEM-BSE (a~e) and TEM (f) images of nanotwinned Cu prepared at 313 K (a), 308 K (b), 303 K (c, f), 298 K (d) and 293 K (e) (Inset shows the SAED pattern, GD—growth direction)
Fig.2  Statistic distributions of grain size d (a) and twin thickness λ (b) of nanotwinned Cu prepared at different electrolyte temperatures, and variation of average grain size <d>, twin thickness <λ> and hardness as a function of temperature T (c)
Fig.3  Open circuit potential vs time curves (a), Tafel polarization curves (b) and exchange current density i0 (c) of the working electrode at different temperatures (i—current density)
Fig.4  Galvanostatic polarization curves of the working electrode at different temperatures (i=30 mA/cm2)
Fig.5  Variation of overpotential η and ηT with the temperature for 6 s (a) and 80 s (b) on galvanostatic polarization of the working electrode
[1] Lu L, Shen Y S, Chen X H, et al.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422
[2] Lu L, Chen X H, Huang X, et al.Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323: 607
[3] You Z S, Lu L, Lu K.Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins[J]. Acta Mater., 2011, 59: 6927
[4] Pan Q S, Lu Q H, Lu L.Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins[J]. Acta Mater., 2013, 61: 1383
[5] Pan Q S, Lu L.Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins[J]. Acta Mater., 2014, 81: 248
[6] Chen K C, Wu W W, Liao C N, et al.Observation of atomic diffusion at twin-modified grain boundaries in copper[J]. Science, 2008, 321: 1066
[7] Chen X H, Lu L, Lu K.Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins[J]. Scr. Mater., 2011, 64: 311
[8] Lu K, Lu L, Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349
[9] Zhang X, Misra A, Wang H, et al.Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning[J]. Acta Mater., 2004, 52: 995
[10] Zhang X, Anderoglu O, Hoagland R G, et al.Nanoscale growth twins in sputtered metal films[J]. JOM, 2008, 60(9): 75
[11] Liu C M, Lin H W, Lu C L, et al.Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu[J]. Sci. Rep., 2014, 4: 6123
[12] Liu T C, Liu C M, Hsiao H Y, et al.Fabrication and characterization of (111)-oriented and nanotwinned Cu by Dc electrodeposition[J]. Cryst. Growth Des., 2012, 12: 5012
[13] Jin S, Pan Q S, Lu L.Microstructure dependence of direct-current electrodeposited bulk Cu with preferentially oriented nanotwins on the current densities[J]. Acta Metall. Sin., 2013, 49: 635(金帅, 潘庆松, 卢磊. 电流密度对直流电解沉积纳米孪晶Cu微观结构的影响 [J]. 金属学报, 2013, 49: 635)
[14] Hasegawa M, Mieszala M, Zhang Y C, et al.Orientation-controlled nanotwinned copper prepared by electrodeposition[J]. Electrochim. Acta, 2015, 178: 458
[15] Chan T C, Chueh Y L, Liao C N.Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition[J]. Cryst. Growth Des., 2011, 11: 4970
[16] Jin S, Cheng Z, Pan Q S, et al.Effect of electrolyte additive concentration on microstructure of direct-current electrodeposited nanotwinned Cu[J]. Acta Metall. Sin., 2016, 52: 973(金帅, 程钊, 潘庆松等. 添加剂浓度对直流电解沉积纳米孪晶Cu微观结构的影响 [J]. 金属学报, 2016, 52: 973)
[17] Seo S, Jin S, Wang G, et al.The effect of copper dissolution in acidic electrolyte on the formation of nanotwin in pulse electrodeposited copper[J]. J. Electrochem. Soc., 2014, 161: D425
[18] Natter H, Hempelmann R.Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH[J]. J. Phys. Chem., 1996, 100: 19525
[19] Kang J X, Zhao W Z, Zhang G F.Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings[J]. Surf. Coat. Technol., 2009, 203: 1815
[20] Liao C N, Lin C Y, Huang C L, et al.Morphology, texture and twinning structure of Cu films prepared by low-temperature electroplating[J]. J. Electrochem. Soc., 2013, 160: D3070
[21] Cohen-Atiya M, Mandler D. Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements [J]. J. Electroanal. Chem., 2003, 550-551: 267
[22] Zhang Q B, Hua Y X, Dong T G, et al.Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with [BMIM]HSO4 as additive[J]. J. Appl. Electrochem., 2009, 39: 1207
[23] Cifuentes L, Simpson J.Temperature dependence of the cathodic and anodic kinetics in a copper electrowinning cell based on reactive electrodialysis[J]. Chem. Eng. Sci., 2005, 60: 4915
[24] Nikoli? N D, Pavlovi? L J, Pavlovi? M G, et al.Effect of temperature on the electrodeposition of disperse copper deposits[J]. J. Serb. Chem. Soc., 2007, 72: 1369
[25] Gründer Y, Markovic N M, Thompson P, et al.Temperature effects on the atomic structure and kinetics in single crystal electrochemistry[J]. Surf. Sci., 2015, 631: 123
[26] Li D.Principles of Electrochemistry [M]. 3rd Ed., Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 286(李荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 286)
[27] Mallik A.An analysis on the effect of temperature on electrocrystallization mechanism during deposition of Cu thin films[J]. Trans. Indian Inst. Met., 2013, 66: 79
[28] Milchev A, Montenegro M I.A galvanostatic study of electrochemical nucleation[J]. J. Electroanal. Chem., 1992, 333: 93
[29] Kanani N.Electroplating: Basic Principles, Processes and Practice[M]. Berlin: Elsevier, 2005: 150
[30] Bufford D C, Wang Y M, Liu Y, et al.Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals[J]. MRS Bull., 2016, 41: 286
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!