Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 419-427    DOI: 10.11900/0412.1961.2017.00144
Orginal Article Current Issue | Archive | Adv Search |
Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed
Jing GUO1,2, Jinguo LI2(), Jide LIU2, Ju HUANG2,3, Xiangbin MENG2, Xiaofeng SUN2
1 University of Chinese Academy of Science, Beijing 100049, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed. Acta Metall Sin, 2018, 54(3): 419-427.

Download:  HTML  PDF(8368KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Seeding technique is a promising method for growing single crystal superalloy blade. However, sometimes stray grains nucleate in the transformation process of single crystal structure from a seed, which always cause failure of single crystal growth. In order to obtain single crystal with high perfection structure, Ni-based single crystal superalloy was prepared with low-segregated seeds by high rate solidification (HRS) method in the dual heating zone furnace. The melt-back zones of seeds were investigated systematically, and the results showed that a fusion zone without microsegregation exists in front of the melt-back equilibrium interface of seeds, in which solidification interface transited from planar to cellular. Further experiments showed that increasing the W content of seeds or the solidification rate can both accelerate the whole non-steady transition process and make fusion zone shrink. Compared with the traditional seeding method, the low segregated heterogeneous seeding technique can increase the casting yield by avoiding the nucleation of stray grains in the fusion zone, which caused by the pinched-off secondary dendrites and constitutional undercooling.

Key words:  Ni-based single crystal superalloy      seed      solidification interface      fusion zone     
Received:  21 April 2017     
Fund: Supported by National Natural Science Foundation of China (Nos.51331005 and U1508213)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00144     OR     https://www.ams.org.cn/EN/Y2018/V54/I3/419

Specimen Vw Nominal composition (seed) k
No. mmmin-1 (mass fraction)
1 1 Ni -
2 1 Ni-28%W 1.04
3 1 Ni-35%W 0.99
4 Quenching Ni -
5 Quenching Ni-28%W 1.04
6 Quenching Ni-35%W 0.99
Table 1  Casting parameters of the samples and the EPMA measured solute segregation ratios in seed
Fig.1  Longitudinal BSEM images of the fusion zone at Vw=1 mm/min with seeds of Ni (a), Ni-28%W (b) and Ni-35%W (c)
Fig.2  Morphologies (a, c, e) and corresponding EPMA line scans (b, d, f) of the fusion zone at Vw=1 mm/min with seeds of Ni (a, b), Ni-28%W (c, d) and Ni-35%W (e, f)
Fig.3  Morphology and EPMA mapping scans for Ni, Al, Ti, Co, Cr, W and Ta at the fusion zone of pure Ni seed (Vw=1 mm/min)
Fig.4  Morphology (a) and EPMA line scan (b) of the fusion zone at Vw=1 mm/min with pure Ni seed
Fig.5  Content variations of solute elements along the solidification direction in the fusion zone of pure Ni seed
Fig.6  Illustrations of solidification interface transition in the fusion zone (λ—wave length of perturbation, λi—critical wave length of perturbation) (a) λ<λi (b) λ>λi
Fig.7  EPMA measured segregation coefficents (k) in the samples (Vw=1 mm/min)
Fig.8  Longitudinal morphologies of fusion zones of pure Ni (a), Ni-28%W (b) and Ni-35%W (c) seeds by quenching
[1] Guo J T.The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metall. Sin., 2010, 46: 513(郭建亭. 高温合金在能源工业领域中的应用现状与发展 [J]. 金属学报, 2010, 46: 513)
[2] Guo J T.Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 4(郭建亭. 高温合金材料学(应用基础理论) [M]. 北京: 科学出版社, 2008: 4)
[3] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2008: 1
[4] Chen W.Investigation of high strength superalloy used for investment casted combustor casing of high thrust-weight ratio aeroengine [D]. Nanjing: Nanjing University of Science and Technology, 2007(陈伟. 高推重比航空发动机整体精铸燃烧室机匣用高强度高温合金研究 [D]. 南京: 南京理工大学, 2007)
[5] Hu Z Q, Liu L R, Jin T, et al.Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3): 1(胡壮麒, 刘丽荣, 金涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1)
[6] Meng X B, Lu Q, Zhang X L, et al.Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame[J]. Acta Mater., 2012, 60: 3965
[7] Zhou Y Z, Volek A, Green N R.Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy[J]. Acta Mater., 2008, 56: 2631
[8] Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971
[9] Ford D A, Hill A D.Single crystal seed alloy [P]. US Pat, 6740176, 2004
[10] Toloraiya V N, Orekhov N G, Kablov E N.Advanced method for single crystal casting of turbine blades for gas turbine engines and plants[J]. Met. Sci. Heat Treat., 2002, 44: 279
[11] Azhazha V M, Sverdlov V Y, Ladygin A N, et al.Self-organization processes in the cellular structure formation of Ni-W alloys[J]. J. Surf. Invest., 2008, 2: 156
[12] Azhazha V M, Ladygin A N, Sverdlov V J, et al.Morphological transition in the cellular structure of single crystals of nickel-tungsten alloys near the congruent melting point[J]. Crystallogr. Rep., 2005, 50(suppl.): S130
[13] Azhazha V M, Gorbenko V Y, Kovtun G P, et al.The growth of single crystals of Ni-W alloy under conditions of high temperature gradient[J]. Crystallogr. Rep., 2004, 49: 307
[14] Zhao N R, Li J G, Liu J L, et al.Solidification interface in growth of single crystal superalloys by seeding technique[J]. J. Mater. Eng., 2007,(11): 24(赵乃仁, 李金国, 刘金来等. 籽晶法生长高温合金单晶凝固界面研究 [J]. 材料工程, 2007, (11): 24)
[15] Zhou Y H, Hu Z Q, Jie W Q.Solidification Technology [M]. Beijing: China Machine Press, 1998: 6(周尧和, 胡壮麒, 介万奇. 凝固技术 [M]. 北京: 机械工业出版社, 1998: 6)
[16] Hu H Q.Fundamentals of Metal Solidification [M]. Beijing: China Machine Press, 1991: 75(胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 1991: 75)
[17] Stanford N, Djakovic A, Shollock B A, et al.Defect grains in the melt-back region of CMSX-4 single crystal seeds [A]. 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 719
[18] Stanford N, Djakovic A, Shollock B A, et al.Seeding of single crystal superalloys-role of seed melt-back on casting defects[J]. Scr. Mater., 2004, 50: 159
[19] Zhao X B, Liu L, Zhang W G, et al.Analysis of competitive growth mechanism of stray grains of single crystal superalloys during directional solidification process[J]. Rare Met. Mater. Eng., 2011, 40: 9
[20] Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, A413-414: 571
[21] Mullins W W, Sekerka R F.Morphological stability of a particle growing by diffusion or heat flow[J]. J. Appl. Phys., 1963, 34: 323
[22] Mullins W W, Sekerka R F.Stability of a planar interface during solidification of a dilute binary alloy[J]. J. Appl. Phys., 1964, 35: 444
[23] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Switzerland: Trans Tech Publications, 1986: 58
[24] Fu H Z, Wang Z J.Non-steady evolution of subhigh rate unidirectional solidification[J]. Chin. J. Mater. Res., 1996, 10: 253(傅恒志, 王祖锦. 亚快速单向凝固晶体生长的非稳态演化 [J]. 材料研究学报, 1996, 10: 253)
[25] Huang W D, Ding G L, Zhou Y H.Effects of non-steady state process on the interface pattern selection during unidirectional solidification[J]. Chin. J. Mater. Res., 1995, 9: 193(黄卫东, 丁国陆, 周尧和. 非稳态过程与凝固界面形态选择 [J]. 材料研究学报, 1995, 9: 193)
[26] D'souza N, Jennings P A, Yang X L, et al. Seeding of single-crystal superalloys—Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metall. Mater. Trans., 2005, 36B: 657
[27] Gu J P, Beckermann C, Giamei A F.Motion and remelting of dendrite fragments during directional solidification of a nickel-base superalloy[J]. Metall. Mater. Trans., 1997, 28A: 1533
[28] Yang X L, Lee P D, D'Souza N. Stray grain formation in the seed region of single-crystal turbine blades[J]. JOM, 2005, 57(5): 40
[29] Zhou Y Z.Formation of stray grains during directional solidification of a nickel-based superalloy[J]. Scr. Mater., 2011, 65: 281
[30] Zhang X L.Fundamental research on production of single crystal superalloys by directional solidification [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013(张小丽. 单晶高温合金定向凝固制备的基础研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[3] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[4] Yanqing SU, Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU. The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys[J]. 金属学报, 2018, 54(5): 647-656.
[5] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
[6] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[7] Sheng PU,Guang XIE,Li WANG,Zhiyi PAN,Langhong LOU. EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2016, 52(5): 538-548.
[8] Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. 金属学报, 2016, 52(5): 549-560.
[9] PU Sheng, XIE Guang, ZHENG Wei, WANG Dong, LU Yuzhang, LOU Langhong, FENG Qiang. EFFECT OF W AND Re ON DEFORMATION AND RECRYSTALLIZATION OF SOLUTION HEAT TREATED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2015, 51(2): 239-248.
[10] ZHAO Xia, ZHA Xiangdong, LIU Yang, ZHANG Long, LIANG Tian, MA Yingche, CHENG Leming. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT[J]. 金属学报, 2015, 51(2): 249-256.
[11] Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. 金属学报, 2015, 51(12): 1472-1480.
[12] Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. 金属学报, 2015, 51(10): 1273-1278.
[13] Tao JIN,Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU. RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2015, 51(10): 1153-1162.
[14] LIN Huiwen, LIU Jide, ZHOU Yizhou, JIN Tao, SUN Xiaofeng. INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2015, 51(1): 77-84.
[15] LUO Yinping, ZHOU Yizhou, LIU Jinlai. INFLUENCE OF Ru AND Cr ON SOLIDIFICATION PROCESS IN A Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2014, 50(9): 1025-1030.
No Suggested Reading articles found!