Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 435-442    DOI: 10.11900/0412.1961.2017.00251
Orginal Article Current Issue | Archive | Adv Search |
Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry
Zheng LIU1(), Zhiping CHEN1, Tao CHEN2
1 School of Mechanical and Electronic Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Download:  HTML  PDF(3278KB) 
Export:  BibTeX | EndNote (RIS)      

A356 aluminum alloy has been widely used in semisolid processing because of its wide range of liquidus and solidus temperatures. The flow of the melt during solidification has a certain influence on the composition, solute distribution, phase morphology and crystal defects of the alloy in the solidification structure. The flow of melt is an important factor that influences the overall performance of the solidification process. The researchers use various external fields to act on the melt to induce the melt flow. Electromagnetic stirring has the characteristics of no contact, no pollution, light oxidation, less gas content and easy to control stirring parameters. It is the most popular method to fabricate semisolid alloy slurry. The electromagnetic force of the electromagnetic field can be used to study the flow phenomena of the melt. Numerical simulation combined with experimental research can get better results. The effects of crucible size and electromagnetic frequency on flow during fabrication of semisolid A356 aluminum alloy slurry under electromagnetic stirring through numerical simulation as well as the influence of crucible size on the primary phase of semisolid A356 aluminum alloy slurry induced by electromagnetic field were investigated. The results show that with the increasing of the major and minor axial ratio of crucible (R), the maximum electromagnetic force and maximum flow rate of the semisolid A356 aluminum alloy at the minor axis firstly increase and then decrease, and the maximum electromagnetic force and maximum flow rate of the semisolid A356 aluminum alloy at the major axis increase first, then decrease and then increase. The higher the electromagnetic frequency, the electromagnetic force difference and the flow rate difference of the semisolid A356 aluminum alloy at the minor axis and the major axis are apparent, so that occurs the phenomenon of "acceleration-deceleration-acceleration" in the melt flow. When the electromagnetic frequency and R are 30 Hz and 1.1 respectively, the maximum flow rate at the major axis and the minor axis of the crucible are 153.6 and 143.2 mm/s respectively, and the flow rate difference is the smallest, better semisolid A356 aluminum alloy slurry can be fabricated at this condition.

Key words:  semisolid aluminum alloy      crucible size      electromagnetic frequency      flow rate      numerical simulation     
Received:  26 June 2017     
Fund: Supported by National Natural Science Foundation of China (Nos.51144009 and 51361012), Natural Science Foundation of Jiangxi Province (No.20142bab206012) and Science and Technology Program of the Education Department of Jiangxi Province (No.GJJ14407)

Cite this article: 

Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry. Acta Metall Sin, 2018, 54(3): 435-442.

URL:     OR

Fig.1  Models (a~d) and mesh partitions (e~h) with major and minor axial ratio of crucible R=1.0 (a, e), R=1.1 (b, f), R=1.2 (c, g) and R=1.3 (d, h)
Fig.2  Calculation flow diagram
Fig.3  Maximum electromagnetic force under different R (a) and electromagnetic frequencies (b) (X and Y represent minor and major axes, respectively)
R 10 Hz 20 Hz 30 Hz 40 Hz
1.0 638.1 760.9 802.0 820.3
1.1 685.0 817.6 849.9 856.3
1.2 682.6 866.1 931.8 962.7
1.3 1928.8 2398.3 2580.6 2673.9
Table 1  Electromagnetic force differences at major and minor axial under different R and electromagnetic frequencies Nm-3)
Fig.4  Maximum flow rates under different R (a) and electromagnetic frequencies (b)
R 10 Hz 20 Hz 30 Hz 40 Hz
1.0 22.4 22.5 22.7 22.6
1.1 8.8 9.9 10.3 10.6
1.2 18.6 21.3 22.1 22.4
1.3 39.2 41.7 41.7 41.4
Table 2  Flow rate differences at major and minor axial under different R and electromagnetic frequencies (mms-1)
Fig.5  OM images show the primary phase morphologies of semisolid A356 alloy with R=1.0 (a), R=1.1 (b), R=1.2 (c) and R=1.3 (d)
Fig.6  Average equal-area circle diameter D and average shape factor F of the primary phase of the semisolid A356 alloy under different R
[1] Kang C G, Bae J W, Kim B M. The grain size control of A356 aluminum alloy by horizontal electromagnetic stirring for rheology forging [J]. J. Mater. Process. Technol., 2007, 187-188: 344
[2] Chung I G, Bolouri A, Kang C G.A study on semisolid processing of A356 aluminum alloy through vacuum-assisted electromagnetic stirring[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 237
[3] Liu Z, Mao W M, Zhao Z D.Effect of pouring temperature on semi-solid slurry of A356 Al alloy prepared by weak electromagnetic stirring[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 71
[4] Barman N, Kumar P, Dutta P.Studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring[J]. J. Mater. Process. Technol., 2009, 209: 5912
[5] Dao V L, Zhao S D, Lin W J.Numerical and experimental study on effect of process parameters on preparation of A356 aluminum alloy semi-solid slurry by electromagnetic stirring[J]. Int. J. Appl. Electrom., 2013, 41: 153
[6] Zhang Z F, Chen X R, Xu J, et al.Numerical simulation on electromagnetic field, flow field and temperature field in semisolid slurry preparation by A-EMS[J]. Rare Met., 2010, 29: 635
[7] Liu Z, Zhang J Y.Research on morphology evolution of different rare-earth elements on primary phase in semisolid aluminum alloy under chaotic advection[J]. J. Mech. Eng., 2016, 52(16): 77(刘政, 张嘉艺. 混沌对流中不同稀土元素对半固态铝合金初生相形貌研究 [J]. 机械工程学报, 2016, 52(16): 77)
[8] Xu J F, Wei B B.Liquid phase flow and microstructure formation during rapid solidification[J]. Acta. Phys. Sin., 2004, 53: 1909(徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律 [J]. 物理学报, 2004, 53: 1909)
[9] Wang J, Zhou Y, Lan S, et al.Numerical simulation and chaotic analysis of an aluminum holding furnace[J]. Metall. Mater. Trans., 2014, 45B: 2194
[10] Liu Z, Liu X M, Hu C H, et al.Research on fractal characteristics of primary phase morphology in semi-solid A356 alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2009, 22: 421
[11] Hu Z H, Wu G H, Zhang P, et al.Primary phase evolution of rheo-processed ADC12 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 19
[12] Nikrityuk P A, Eckert K, Grundmann R.A numerical study of unidirectional solidification of a binary metal alloy under influence of a rotating magnetic field[J]. Int. J. Heat Mass Transfer, 2006, 49: 1501
[13] Dadzis K, Lukin G, Meier D, et al.Directional melting and solidification of gallium in a traveling magnetic field as a model experiment for silicon processes[J]. J. Cryst. Growth, 2016, 445: 90
[14] Zhao J Z, Li H L, Zhao L.Effects of convections and motions of minority phase droplets on solidification of monotectic alloys[J]. Acta Metall. Sin., 2009, 45: 1435(赵九洲, 李海丽, 赵雷. 对流和弥散相液滴运动对偏晶合金凝固的影响 [J]. 金属学报, 2009, 45: 1435)
[15] Wang J, Fautrelle Y, Nguyen-Thi H, et al.Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification[J]. Metall. Mater. Trans., 2016, 47A: 1169
[16] Wang B, Wang X D, Etay J, et al.Flow driven by an archimedean helical permanent magnetic field. Part I: Flow patterns and their transitions[J]. Metall. Mater. Trans., 2016, 47B: 1369
[17] Chowdhury J, Ganguly S, Chakraborty S.Numerical simulation of transport phenomena in electromagnetically stirred semi-solid materials processing[J]. J. Phys., 2005, 38D: 2869
[18] Chen X R, Zhang Z F, Xu J, et al.Numerical simulation of electromagnetic field, flow field and temperature field in semi-solid slurry preparation by electromagnetic stirring[J]. Chin. J. Nonferrous Met., 2010, 20: 937(陈兴润, 张志峰, 徐骏等. 电磁搅拌法制备半固态浆料过程电磁场、流场和温度场的数值模拟 [J]. 中国有色金属学报, 2010, 20: 937)
[19] Tao W Y, Zhao S D, Lin W J.Numerical simulation on A356 aluminum alloy semi-solid slurry preparation with electromagnetic stirring[J]. J. Mech. Eng., 2012, 48(14): 50(陶文琉, 赵升吨, 林文捷. A356铝合金半固态浆料电磁搅拌法制备过程的数值模拟 [J]. 机械工程学报, 2012, 48(14): 50)
[20] Liu Z, Zhang J Y, Yu Z F.Simulation and analysis on chaotic characteristic of flow in Al alloy melt under electromagnetic field[J]. Chin. J. Nonferrous Met., 2015, 25: 3026(刘政, 张嘉艺, 余昭福. 电磁场作用下中铝合金熔体流动的混沌特征的仿真与分析 [J]. 中国有色金属学报, 2015, 25: 3026)
[21] Liu Z, Liu X M, Zhu T, et al.Effects of electromagnetic stirring with low current frequency on RE distribution in semisolid aluminum alloy[J]. Acta Metall. Sin., 2015, 51: 272(刘政, 刘小梅, 朱涛等. 低频电磁搅拌对半固态铝合金中稀土分布的影响 [J]. 金属学报, 2015, 51: 272)
[22] Liu Z, Zhang J Y, Luo H L, et al.Research on morphology evolution of primary phase in semisolid A356 alloy under chaotic advection[J]. Acta Metall. Sin., 2016, 52: 177(刘政, 张嘉艺, 罗浩林等. 混沌对流下的半固态A356铝合金初生相形貌演变研究 [J]. 金属学报, 2016, 52: 177)
[23] Yin J F, You Y X, Li W, et al.Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force[J]. Acta Phys. Sin., 2014, 63: 206(尹纪富, 尤云祥, 李巍等. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析 [J]. 物理学报, 2014, 63: 206)
[24] Bai X W, Zhang H O, Zhou X M, et al.Electromagneto-fluid coupling simulation of arc rapid prototyping process with external high-frequency magnetic field[J]. J. Mech. Eng., 2016, 52(4): 60(柏兴旺, 张海鸥, 周祥曼等. 外加高频磁场下电弧快速成形过程的电磁-流体耦合数值模拟 [J]. 机械工程学报, 2016, 52(4): 60)
[25] Wang C Z, Liu F G, Zhang Y T, et al.Numerical simulation on electromagnetic, thermal and fluid fields in preparing process of semi-solid slurry[J]. J. Shenyang Univ. Technol., 2010, 32: 279(王承志, 刘凤国, 张玉妥等. 半固态浆料制备过程的电磁热流体数值模拟 [J]. 沈阳工业大学学报, 2010, 32: 279)
[26] Liu H P, Xu M G, Qiu S T, et al.Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring[J]. Metall. Mater. Trans., 2012, 43B: 1657
[27] Zhao Q, Zhang X G, Zhang H Y, et al.Numerical simulation of spiral magnetic field of electromgnetic stirring[J]. Chin. J. Nonferrous Met., 2014, 24: 1041(赵倩, 张兴国, 张环月等. 螺旋磁场电磁搅拌的数值模拟 [J]. 中国有色金属学报, 2014, 24: 1041)
[28] Zhang J, Wang E G, Deng A Y, et al.Effects of mold EMS parameters on distributions of magnetic induction and electromagnetic force during continuous casting[J]. J. Northeastern Univ.(Nat. Sci.), 2010, 31: 1432(张 静, 王恩刚, 邓安元等. 连铸结晶器电磁搅拌参数对磁场分布的影响 [J]. 东北大学学报(自然科学版), 2010, 31: 1432)
[29] Li N, Zhang R, Zhang L M, et al.Study on grain refinement mechanism of hypoeutectic Al-7%Si alloy under low voltage alternating current pulse[J]. Acta Metall. Sin., 2017, 53: 192(李宁, 张蓉, 张利民等. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究 [J]. 金属学报, 2017, 53: 192)
[1] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[2] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[3] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[4] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[5] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[6] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[7] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[8] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[9] Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. 金属学报, 2018, 54(2): 265-277.
[10] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
[11] Shiping WU, Rujia WANG, Wei CHEN, Guixin DAI. Progress on Numerical Simulation of Vibration in the Metal Solidification[J]. 金属学报, 2018, 54(2): 247-264.
[12] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[13] Dunming LIAO, Liu CAO, Fei SUN, Tao CHEN. Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process[J]. 金属学报, 2018, 54(2): 161-173.
[14] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[15] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
No Suggested Reading articles found!