Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 918-926    DOI: 10.11900/0412.1961.2016.00472
Orginal Article Current Issue | Archive | Adv Search |
Study on the Selective Laser Melting of AlSi10Mg
Wenqi ZHANG, Haihong ZHU(), Zhiheng HU, Xiaoyan ZENG
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(1488KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The growing interest for a wide range of usable Al alloy parts with complex shape in industrial field makes selective laser melting (SLM) stand out as a new technology for rapid prototyping manufacturing. The objective of this work is to investigate AlSi10Mg cast aluminum alloy manufacturing by SLM. The investigation involved the influence of process parameters on the relative density and the influence of heat treatment on the microstructure and mechanical properties. High density and performance were achieved. The results show that the tensile strength of the SLMed AlSi10Mg is much higher than that of press wrought AlSi10Mg, but the elongation is as almost same as that of the press wrought AlSi10Mg. The heat treatment has a significant effect on the mechanical properties and microstructure of SLMed AlSi10Mg parts. The mechanical properties changes with the annealing temperature. Compared with the mechanical properties without annealing process, the tensile strength decreases from 507~518 MPa to 378~406 MPa and the elongation increases from 3.0%~3.5% to 6.5%~9.0% when the annealing temperature is 300 ℃ and the soap time is 2 h because of the changes in the morphology and distribution of the Si.

Key words:  AlSi10Mg      selective laser melting      mechanical property      heat treatment     
Received:  24 October 2016     
ZTFLH:  TG665  
Fund: Supported by National Natural Science Foundation of China (No.61475056), Fundamental Research Funds for the Central Universities (No.2016XYZD00), Natural Science Foundation of Hubei Province (No.2014CFA049) and Director Fund of Wuhan National Laboratory for Optoelectronics

Cite this article: 

Wenqi ZHANG, Haihong ZHU, Zhiheng HU, Xiaoyan ZENG. Study on the Selective Laser Melting of AlSi10Mg. Acta Metall Sin, 2017, 53(8): 918-926.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00472     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/918

Fig.1  Schematic of experimental device
Fig.2  Influence of scanning velocity (v) on the relative density of selective laser melted (SLMed) AlSi10Mg
Fig.3  OM images of SLMed AlSi10Mg under different scanning velocities

(a) 50 mm/s (b) 100 mm/s (c) 250 mm/s (d) 300 mm/s (e) 550 mm/s (f) 600 mm/s

Fig.4  Influence of hatching space (h) on the relative density of SLMed AlSi10Mg
Fig.5  Influence of slice thickness (s) on the relative density of SLMed AlSi10Mg
Fig.6  Cross-sectional SEM images of SLMed AlSi10Mg

(a) heat-affected zone (HAZ) (b) fine grain zone and coarse grain zone

Fig.7  EDS scanning results of SLMed AlSi10Mg
Fig.8  Microstructures of SLMed AlSi10Mg (a) and heat treated AlSi10Mg samples at 230 ℃ (b) and 300 ℃ for 2 h (c)
Fig.9  XRD spectra for AlSi10Mg samples at different states
Fig.10  Stress-strain curve of SLMed AlSi10Mg specimen
Fig.11  Influence of scanning velocity on the microhardness of SLMed AlSi10Mg
Fig.12  Mechanical properties of the SLMed and heat treated AlSi10Mg specimens at room temperature (UTS—tensile strength, σ—yield strength, δ—elongation)
Fig.13  Microhardnesses of the SLMed AlSi10Mg specimens under different heat-treatment processed
[1] Zhang H, Zhu H H, Qi T, et al.Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties[J]. Mater. Sci. Eng., 2016, A656: 47
[2] Chen R, Xu Q Y, Liu B C.Modelling investigation of precipitation kinetics and strengthening for needle/rod-shaped precipitates in Al-Mg-Si alloys[J]. Acta Metall. Sin., 2016, 52: 987(陈瑞, 许庆彦, 柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究[J]. 金属学报, 2016, 52: 987)
[3] Heinz A, Haszler A, Keidel C, et al.Recent development in aluminium alloys for aerospace applications[J]. Mater. Sci. Eng., 2000, A280: 102
[4] Calignano F.Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Mater. Des., 2014, 64: 203
[5] Kanagarajah P, Brenne F, Niendorf T, et al.Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading[J]. Mater. Sci. Eng., 2013, A588: 188
[6] Yadroitsev I, Smurov I.Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape[J]. Phys. Procedia, 2010; 5: 551
[7] Hu Z H, Zhu H H, Zhang H, et al.Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Opt. Laser Technol., 2017, 87: 17
[8] Zhang D Y.Model manufacturing process from aluminum alloys using selective laser melting[J]. Chin. J. Lasers, 2007, 34: 1700(张冬云. 采用区域选择激光熔化法制造铝合金模型[J]. 中国激光, 2007, 34: 1700)
[9] Dai D H, Gu D D.Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. Int. J. Mach. Tools Manuf., 2015, 88: 95
[10] Wei K W, Wang Z M, Zeng X Y.Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Mater. Lett., 2015, 156: 187
[11] Aboulkhair N T, Maskery I, Tuck C, et al.On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties[J]. J. Mater. Process. Technol., 2016, 230: 88
[12] Buchbinder D, Meiners W, Pirch N, et al.Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. J. Laser Appl., 2014, 26: 012004
[13] Li Y L, Gu D D.Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856
[14] Kempen K, Thijs L, Yasa E, et al.Process optimization and microstructural analysis for selective laser melting of AlSi10Mg [A]. Solid Freeform Fabrication: An Additive Manufacturing Conference[C]. Austin: University of Texas, 2011: 484
[15] Louvis E, Fox P, Sutcliffe C J.Selective laser melting of aluminium components[J]. J. Mater. Process. Technol., 2011, 211: 275
[16] Thijs L, Kempen K, Kruth J P, et al.Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Mater., 2013, 61: 1809
[17] Lam L P, Zhang D Q, Liu Z H, et al.Phase analysis and microstructure characterisation of AlSi10Mg parts produced by selective laser melting[J]. Virtual Phys. Prototyp., 2015, 10: 207
[18] Brandl E, Heckenberger U, Holzinger V, et al.Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Mater. Des., 2012, 34: 159
[19] Kempen K, Thijs L J, Van Humbeeck J, et al.Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Phys. Procedia, 2012, 39: 439
[20] Aboulkhair N T, Tuck C, Ashcroft I, et al.On the precipitation hardening of selective laser melted AlSi10Mg[J]. Metall. Mater. Trans., 2015, 46A: 3337
[21] Zhang H, Zhu H, Nie X, et al.Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scr. Mater., 2017, 134: 6
[22] Guan K, Wang Z M, Gao M, et al.Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Mater. Des., 2013, 50: 581
[23] Read N, Wang W, Essa K, et al.Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
[24] Rosenthal I, Stern A, Frage N.Microstructure and mechanical properties of alsi10mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metall. Microstruct. Anal., 2014, 3: 448
[25] Li W, Li S, Liu J, et al.Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Mater. Sci. Eng., 2016, A663: 116
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[11] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[12] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[13] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[14] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[15] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
No Suggested Reading articles found!