|
|
Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying |
Peng JIANG1( ),Tongxin YUAN1,Yandong YU2 |
1 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China 2 School of Materials Science and Engineering,Harbin University of Science and Technology, Harbin 150040, China |
|
Cite this article:
Peng JIANG,Tongxin YUAN,Yandong YU. Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying. Acta Metall Sin, 2017, 53(4): 433-439.
|
Abstract The method of separation and purification of hydrogen from a mixed gas based on the permeation of hydrogen through a dense metallic membrane appears as an attractive mean of producing high purity hydrogen at a large scale. V-based alloy membranes with bcc structure are of great interest for hydrogen separation applications due to their low cost and high permeability. The hydrogen flux of the membrane is proportional to its hydrogen permeability and inversely proportional to its thickness. Therefore, V-based alloys should be fabricated in the form of large and thin membranes with the least possible thickness. Rolling process is presently regarded as the most promising route to a large scale fabrication of hydrogen permeable metal membranes. The refractory nature of the most prospective bcc alloys, and their potentially complex compositions, restrict the fabrication techniques which can be applied to form the alloy into a thin foil. In this work, thin sheets of V55Ti30Ni15 alloy were produced by a thermo-mechanical treatment consisting in successive heat treatment, rolling and annealing treatment, and the effect of microstructures resulting from different processing conditions on hydrogen permeability, have been investi gated for the multiphase V55Ti30Ni15 alloy. Precipitation of NiTi particles from V-matrix of V55Ti30Ni15 alloy during heat treatment, reduces the volume fraction of V-matrix contributing mainly to hydrogen permeation, which results in the decreasing of hydrogen permeability. The microstructure of the alloy after heat treatment evolved into a fibrous/lamellar microstructure during hot-rolling deformation, and a significant reduction in hydrogen permeability accompanied this deformation. Subsequent annealing decreased the dislocation density and increased hydrogen permeability. Dislocations have a great impact on hydrogen permeability due to their ability to trap diffusing hydrogen.
|
Received: 16 August 2016
|
Fund: Supported by Natural Science Foundation of Jiangsu Province (No.BK20150268) |
[1] | Lubitz W, Tumas W.Hydrogen: An overview[J]. Chem. Rev., 2007, 107: 3900 | [2] | Adhikari S, Fernando S.Hydrogen membrane separation techniques[J]. Ind. Eng. Chem. Res., 2006, 45: 875 | [3] | Ward T L, Dao T.Model of hydrogen permeation behavior in palladium membranes[J]. J. Membr. Sci., 1999, 153: 211 | [4] | Taxak M, Kumar S, Sheelvantra S, et al.Effect of iron on the solubility of hydrogen in tantalum[J]. J. Mater. Sci., 2014, 49: 8471 | [5] | Xiong L Y, Liu S, Wang L B, et al.Microstructures and hydrogen permeation characteristics of Nb-Ti-Ni alloys[J]. Acta Metall. Sin., 2008, 44: 781 | [5] | (熊良银, 刘实, 王隆保等. Nb-Ti-Ni合金的显微组织与氢渗透性能[J]. 金属学报, 2008, 44: 781) | [6] | Oh J Y, Ko W S, Suh J Y, et al.Enhanced high temperature hydrogen permeation characteristics of V-Ni alloy membranes containing a trace amount of yttrium[J]. Scr. Mater., 2016, 116: 122 | [7] | Buxbaum R E, Kinney A B.Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium[J]. Ind. Eng. Chem. Res., 1996, 35: 530 | [8] | Alimov V N, Busnyuk A O, Notkin M E, et al.Hydrogen transport through V-Pd alloy membranes: Hydrogen solution, permeation and diffusion[J]. J. Membr. Sci., 2015, 481: 54 | [9] | Suzuki A, Yukawa H, Ijiri S, et al.Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes[J]. Mater. Trans., 2015, 56: 1688 | [10] | Suzuki A, Yukawa H, Nambu T, et al.Analysis of pressure-composition-isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement[J]. J. Membr. Sci., 2016, 503: 110 | [11] | Nishimura C, Komaki M, Hwang S, et al. V-Ni alloy membranes for hydrogen purification [J]. J. Alloys Compd., 2002, 330-332: 902 | [12] | Yang J Y, Nishimura C, Komaki M. Effect of H2S on hydrogen permeation of Pd60Cu40/V-15Ni composite membrane [J]. J. Alloys Compd., 2007, 446-447: 575 | [13] | Zhang Y, Ozaki T, Komaki M, et al.Hydrogen permeation of Pd-Ag alloy coated V-15Ni composite membrane: Effects of overlayer composition[J]. J. Membr. Sci., 2003, 224: 81 | [14] | Nishimura C, Ozaki T, Komaki M, et al. Hydrogen permeation and transmission electron microscope observations of V-Al alloys [J]. J. Alloys Compd., 2003, 356-357: 295 | [15] | Paglieri S N, Wermer J R, Buxbaum R E, et al.Development of membranes for hydrogen separation: Pd coated V-10Pd[J]. Energy Mater., 2008, 3(3): 169 | [16] | Zhang Y, Ozaki T, Komaki M, et al.Hydrogen permeation characteristics of vanadium-aluminium alloys[J]. Scr. Mater., 2002, 47: 601 | [17] | Roark S E, MacKay R, Mundschau M V. Dense, layered membranes for hydrogen separation [P].US Pat., 7001446, 2006 | [18] | Kim K H, Shim J H, Lee B J.Effect of alloying elements (Al, Co, Fe, Ni) on the solubility of hydrogen in vanadium: A thermodynamic calculation[J]. Int. J. Hydrogen Energy, 2012, 37: 7836 | [19] | Adams T M, Mickalonis J.Hydrogen permeability of multiphase V-Ti-Ni metallic membranes[J]. Mater. Lett., 2007, 61: 817 | [20] | Hashi K, Ishikawa K, Matsuda T, et al. Hydrogen permeation characteristics of (V, Ta)-Ti-Ni alloys [J]. J. Alloys Compd., 2005, 404-406: 273 | [21] | Jeon S I, Magnone E, Park J H, et al.The effect of temperature and pressure on the hydrogen permeation through Pd-coated Ti26Ni21V53 alloy membrane under different atmospheres[J]. Mater. Lett., 2011, 65: 2495 | [22] | Hashi K, Ishikawa K, Matsuda T, et al.Hydrogen permeation characteristics of multi-phase Ni-Ti-Nb alloys[J]. J. Alloys Compd., 2004, 368: 215 | [23] | Magnone E, Jeon S I, Park J H, et al.Relationship between microstructure and hydrogen permeation properties in the multiphase Ni21Ti23Nb56 alloy membranes[J]. J. Membr. Sci., 2011, 384: 136 | [24] | Ishikawa K, Tokui S, Aoki K.Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy[J]. Intermetallics, 2009, 17: 109 | [25] | Luo W, Ishikawa K, Aoki K.Hydrogen permeable Ta-Ti-Ni duplex phase alloys with high resistance to hydrogen embrittlement[J]. J. Alloys Compd., 2008, 460: 353 | [26] | Hashi K, Ishikawa K, Matsuda T, et al.Microstructure and hydrogen permeability in Nb-Ti-Co multiphase alloys[J]. J. Alloys Compd., 2006, 425: 284 | [27] | Li X Z, Liu D M, Liang X, et al.Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes[J]. J. Membr. Sci., 2016, 514: 294 | [28] | Ishikawa K, Takano T, Matsuda T, et al.High hydrogen permeability in the Nb-Zr-Ni eutectic alloy containing the primary body-centered-cubic (Nb, Zr) phase[J]. Appl. Phys. Lett., 2005, 87: 081906 | [29] | Jiang P, Yu Y D.Effect of heat treatment process on microstructure and hardness of V55Ti30Ni15 alloy for hydrogen permeation[J]. Acta Metall. Sin., 2013, 49: 1105 | [29] | (江鹏, 于彦东. 热处理工艺对透氢V55Ti30Ni15合金的显微组织和硬度的影响[J]. 金属学报, 2013, 49: 1105) | [30] | Dolan M D.Non-Pd BCC alloy membranes for industrial hydrogen separation[J]. J. Membr. Sci., 2010, 362: 12 | [31] | Fleury E, Suh J Y, Kim D I, et al.Hydrogen permeation characteristics of rolled V85Al10Co5 alloys[J]. Curr. Appl. Phys., 2012, 12: 1131 | [32] | Williamson G K, Smallman R E.III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philos. Mag., 1956, 1: 34 | [33] | Revay L.X-ray line broadening in electrodeposited gold coatings[J]. Electrodepo. Surf. Treat., 1975, 3: 139 | [34] | Dolan M D, McLennan K G, Way J D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions[J]. J. Phys. Chem., 2012, 116C: 1512 | [35] | Nishimura C, Komaki M, Amano M.Hydrogen permeation characteristics of vanadium-nickel alloys[J]. Mater. Trans., 1991, 32: 501 | [36] | Connor H.Palladium alloy diffusion cells[J]. Platin. Met. Rev., 1962, 6: 130 | [37] | Kurkela M, Latanision R M.The effect of plastic deformation on the transport of hydrogen in nickel[J]. Scr. Metall., 1979, 13: 927 | [38] | Hirth J P.Effects of hydrogen on the properties of iron and steel[J]. Metall. Mater. Trans., 1980, 11A: 861 | [39] | Kumnick A J, Johnson H H.Deep trapping states for hydrogen in deformed iron[J]. Acta Metall., 1980, 28: 33 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|