|
|
Effect of Ru on the Solidification Microstructure of a Ni-Based Single Crystal Superalloy with High Cr Content |
Likui NING( ),Jian TONG,Enze LIU,Zheng TAN,Huisi JI,Zhi ZHENG |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
Likui NING,Jian TONG,Enze LIU,Zheng TAN,Huisi JI,Zhi ZHENG. Effect of Ru on the Solidification Microstructure of a Ni-Based Single Crystal Superalloy with High Cr Content. Acta Metall Sin, 2017, 53(4): 423-432.
|
Abstract Ni-based single crystal superalloys have been widely used in manufacturing the critical components of aero-engines, such as turbine blades and vanes. Improvements in phase stability on the addition of Ru are well known in the field of Ni-based superalloy development. Cr is beneficial to hot co-rrosion resistance of Ni-based superalloys. Generally, superalloys which used under easy corrosion conditions should contain high levels of Cr. Early researches about the influence of Ru on solidification microstructures in Ni-based single crystal alloys are mostly focused on low-Cr systerms (<6%). Since Cr has complex interactions with Ru, it is meanful to study the effects of Ru on solidification microstructures in high-Cr (>10%) Ni-based single crystal superalloy systems. The materials used in this work are Ni-based single crystal superalloy with high Cr content. Three superalloys by changing Ru addition (0, 1.5%, 3%, mass fraction) were designed. By observing the as-cast structure, the effect of Ru on the elements distribution and the precipitation characters of different phases in these alloys were studied. It is found that as the Ru content increases, the primary and secondary dendrite arm spacings decrease gradually; the volume fraction of (γ+γ′) eutectic increases firstly and then decreases; the γ′ size is reduced progressively. The addition of 3%Ru leads to the formation of β-NiAl phase, which contain a certain amount of Cr, Co and Ru except the basic elements Ni and Al. The typical "reverse partitioning" of other alloying elements is exhibited with the addition of Ru, while the formation of β-NiAl phase can reduce the "reverse partitioning" of other alloying elements. The addition of Ru could enhance the segregation of positive segregation elements Ta, Al and negative segregation element Re while reduce the segregation of positive segregation elements Mo and Cr.
|
Received: 08 July 2016
|
Fund: Supported by National Natural Science Foundation of China (No.51501193) |
[1] | Giamei A F, Anton D L.Rhenium additions to a Ni-base superalloy: Effects on microstructure[J]. Metall. Trans., 1985, 16A: 1997 | [2] | Murakami T H H, Honma T, Koizumi Y, et al. Distribution of platinum group metals in Ni-base single-crystal superalloys [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 747 | [3] | Yeh A C, Rae C M F, Tin S. High temperature creep of Ru-bearing Ni-base single crystal superalloys [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 677 | [4] | Epishin A, Link T.Mechanisms of high temperature creep of nickel-base superalloys under low applied stress [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 137 | [5] | Collins H E.The effect of thermal exposure on the microstructure and mechanical properties of nickel-base superalloys[J]. Metall. Trans., 1974, 5: 189 | [6] | Austin C M,O'Hara K S, Darolia R, et al. New nickel base super-alloy-useful for gas turbine engine single crystal air foil [P]. US Pat, 5151249-A, 1992 | [7] | Rea C M F, Karunaratne M S A, Small C J, et al. Topologically close packed phases in an experimental rhenium-containing single crystal superalloy [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 767 | [8] | Rea C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys[J]. Acta Mater., 2001, 49: 4113 | [9] | Tin S, Pollock T M.Phase instabilities and carbon additions in single-crystal nickel-base superalloys[J]. Mater. Sci. Eng., 2003, A348: 111 | [10] | Lavigne O, Ramusat C, Drawin S, et al.Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 667 | [11] | O'Hara K S,Walston W S, Ross E W, et al. Nickel base superalloy and article [P]. US Pat, 5482789-A, 1996 | [12] | Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 15 | [13] | Sato A, Harada H, Yokokawa T, et al.The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scr. Mater., 2006, 54: 1679 | [14] | Hobbs R A, Zhang L, Rae C M F, et al. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 ℃[J]. Metall. Mater. Trans., 2008, 39A: 1014 | [15] | Feng Q, Nandy T K, Tin S, et al.Solidification of high-refractory ruthenium-containing superalloys[J]. Acta Mater., 2003, 51: 269 | [16] | Hobbs R A, Tin S, Rae C M F, et al. Solidification characteristics of advanced nickel-base single crystal superalloys [A]. Super-alloys 2004[C]. Warrendale, PA: TMS, 2004: 819 | [17] | Kearsey R M, Beddoes J C, Jaansalu K M, et al.The effects of Re, W and Ru on microsegregation behaviour in single crystal super-alloy systems [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 801 | [18] | Feng Q, Carroll L J, Pollock T M.Soldification segregation in ruthenium-containing nickel-base superalloys[J]. Metall. Mater. Trans., 2006, 37A: 1949 | [19] | Heckl A, Neumeier S, Goken M, et al.The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys[J]. Mater. Sci. Eng., 2011, A528: 3435 | [20] | Jin T.Role of ruthenium in Ni-based single crystal superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Science, 2009 | [20] | (金涛. 钌在镍基单晶高温合金中的作用 [D]. 沈阳: 中国科学院金属研究所, 2009) | [21] | Liu G, Liu L, Zhao X B, et al.Effects of Re and Ru on the solidification characteristics of nickel-base single-crystal superalloys[J]. Metall. Mater. Trans., 2011, 42A: 2733 | [22] | Caldwell E C, Fela F J, Fuchs G E.Segregation of elements in high refractory content single crystal nickel based superalloys [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 811 | [23] | Kurz W, Fisher D J.Fundamentals of Solidification[M]. Aedermannsdorf, Switzerland: Trans Tech Pub, 1998: 247 | [24] | Volek A, Pyczak F, Singer R F, et al.Partitioning of Re between γ and γ' phase in nickel-base superalloys[J]. Scr. Mater., 2005, 52: 141 | [25] | Blavette D, Caron P, Khan T.An atom-probe study of some fine-scale microstructural features in Ni-based single crystal super-alloys [A]. Superalloys 1988[C]. Warrendale, PA: TMS, 1988: 305 | [26] | Giamei A F, Anton D L.Rhenium additions to a Ni-base super-alloy: Effects on microstructure[J]. Metall. Mater. Trans., 1985, 16A: 1997 | [27] | Guan X R.Investigation of effects of Ti, Cr and Re on microstructure and performance of Ni-based superalloy [D]. Shenyang: Northeastern University, 2010 | [27] | (管秀荣. Ti, Cr, Re对镍基高温合金组织及性能影响研究 [D]. 沈阳: 东北大学, 2010) | [28] | Kearsey R M, Beddoes J C, Jones P, et al.Compositional design considerations for microsegregation in single crystal superalloy systems[J]. Intermetallics, 2004, 12: 903 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|