Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying
Peng JIANG1(),Tongxin YUAN1,Yandong YU2
1 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China 2 School of Materials Science and Engineering,Harbin University of Science and Technology, Harbin 150040, China
Cite this article:
Peng JIANG,Tongxin YUAN,Yandong YU. Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying. Acta Metall Sin, 2017, 53(4): 433-439.
The method of separation and purification of hydrogen from a mixed gas based on the permeation of hydrogen through a dense metallic membrane appears as an attractive mean of producing high purity hydrogen at a large scale. V-based alloy membranes with bcc structure are of great interest for hydrogen separation applications due to their low cost and high permeability. The hydrogen flux of the membrane is proportional to its hydrogen permeability and inversely proportional to its thickness. Therefore, V-based alloys should be fabricated in the form of large and thin membranes with the least possible thickness. Rolling process is presently regarded as the most promising route to a large scale fabrication of hydrogen permeable metal membranes. The refractory nature of the most prospective bcc alloys, and their potentially complex compositions, restrict the fabrication techniques which can be applied to form the alloy into a thin foil. In this work, thin sheets of V55Ti30Ni15 alloy were produced by a thermo-mechanical treatment consisting in successive heat treatment, rolling and annealing treatment, and the effect of microstructures resulting from different processing conditions on hydrogen permeability, have been investi gated for the multiphase V55Ti30Ni15 alloy. Precipitation of NiTi particles from V-matrix of V55Ti30Ni15 alloy during heat treatment, reduces the volume fraction of V-matrix contributing mainly to hydrogen permeation, which results in the decreasing of hydrogen permeability. The microstructure of the alloy after heat treatment evolved into a fibrous/lamellar microstructure during hot-rolling deformation, and a significant reduction in hydrogen permeability accompanied this deformation. Subsequent annealing decreased the dislocation density and increased hydrogen permeability. Dislocations have a great impact on hydrogen permeability due to their ability to trap diffusing hydrogen.
Fig.1 Dark-field TEM image of V55Ti30Ni15 alloy heated at 800 ℃ for 18 h
Fig.2 SEM (a) and TEM (b) images of precipitated NiTi particles and dislocation (c) of V55Ti30Ni15 alloys with 70% rolling reduction (Inset in Fig.2a shows high magnified image)
Fig.3 SEM (a) and TEM (b) images of rolled V55Ti30Ni15 alloys annealed at 950 ℃ for 3 h (Inset in Fig.3a shows high magnified image)
Fig.4 XRD spectra of V55Ti30Ni15 alloy under different processing conditions
Fig.5 Hydrogen permeability at 400 ℃ for V55Ti30Ni15 alloys subjected to different processing conditions
Membrane
Hydrogen permeability at 400 ℃ 10-8 molm-1s-1Pa-0.5
Hydrogen pressure difference ΔP MPa
Pure Pd[31]
1.6
0.6
Pd-Cu[31]
1.4
0.6
As-cast V85Ni15[34]
4.0
0.7
As-cast V41Ti30Ni29[20]
1.02
0.2
As-cast Nb56Ti23Ni21[23]
3.47
0.45
Table 1 Hydrogen permeability at 400 ℃ for several representative metal membranes[20,23,31,34]
Fig.6 Relation between hydrogen permeation direction and microstructures (NiTi and NiTi2) extending direction of V55Ti30Ni15 alloy (a) parallel (b) vertical
Oh J Y, Ko W S, Suh J Y, et al.Enhanced high temperature hydrogen permeation characteristics of V-Ni alloy membranes containing a trace amount of yttrium[J]. Scr. Mater., 2016, 116: 122
[7]
Buxbaum R E, Kinney A B.Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium[J]. Ind. Eng. Chem. Res., 1996, 35: 530
[8]
Alimov V N, Busnyuk A O, Notkin M E, et al.Hydrogen transport through V-Pd alloy membranes: Hydrogen solution, permeation and diffusion[J]. J. Membr. Sci., 2015, 481: 54
[9]
Suzuki A, Yukawa H, Ijiri S, et al.Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes[J]. Mater. Trans., 2015, 56: 1688
[10]
Suzuki A, Yukawa H, Nambu T, et al.Analysis of pressure-composition-isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement[J]. J. Membr. Sci., 2016, 503: 110
[11]
Nishimura C, Komaki M, Hwang S, et al. V-Ni alloy membranes for hydrogen purification [J]. J. Alloys Compd., 2002, 330-332: 902
[12]
Yang J Y, Nishimura C, Komaki M. Effect of H2S on hydrogen permeation of Pd60Cu40/V-15Ni composite membrane [J]. J. Alloys Compd., 2007, 446-447: 575
[13]
Zhang Y, Ozaki T, Komaki M, et al.Hydrogen permeation of Pd-Ag alloy coated V-15Ni composite membrane: Effects of overlayer composition[J]. J. Membr. Sci., 2003, 224: 81
[14]
Nishimura C, Ozaki T, Komaki M, et al. Hydrogen permeation and transmission electron microscope observations of V-Al alloys [J]. J. Alloys Compd., 2003, 356-357: 295
[15]
Paglieri S N, Wermer J R, Buxbaum R E, et al.Development of membranes for hydrogen separation: Pd coated V-10Pd[J]. Energy Mater., 2008, 3(3): 169
[16]
Zhang Y, Ozaki T, Komaki M, et al.Hydrogen permeation characteristics of vanadium-aluminium alloys[J]. Scr. Mater., 2002, 47: 601
[17]
Roark S E, MacKay R, Mundschau M V. Dense, layered membranes for hydrogen separation [P].US Pat., 7001446, 2006
[18]
Kim K H, Shim J H, Lee B J.Effect of alloying elements (Al, Co, Fe, Ni) on the solubility of hydrogen in vanadium: A thermodynamic calculation[J]. Int. J. Hydrogen Energy, 2012, 37: 7836
[19]
Adams T M, Mickalonis J.Hydrogen permeability of multiphase V-Ti-Ni metallic membranes[J]. Mater. Lett., 2007, 61: 817
[20]
Hashi K, Ishikawa K, Matsuda T, et al. Hydrogen permeation characteristics of (V, Ta)-Ti-Ni alloys [J]. J. Alloys Compd., 2005, 404-406: 273
[21]
Jeon S I, Magnone E, Park J H, et al.The effect of temperature and pressure on the hydrogen permeation through Pd-coated Ti26Ni21V53 alloy membrane under different atmospheres[J]. Mater. Lett., 2011, 65: 2495
[22]
Hashi K, Ishikawa K, Matsuda T, et al.Hydrogen permeation characteristics of multi-phase Ni-Ti-Nb alloys[J]. J. Alloys Compd., 2004, 368: 215
[23]
Magnone E, Jeon S I, Park J H, et al.Relationship between microstructure and hydrogen permeation properties in the multiphase Ni21Ti23Nb56 alloy membranes[J]. J. Membr. Sci., 2011, 384: 136
[24]
Ishikawa K, Tokui S, Aoki K.Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy[J]. Intermetallics, 2009, 17: 109
[25]
Luo W, Ishikawa K, Aoki K.Hydrogen permeable Ta-Ti-Ni duplex phase alloys with high resistance to hydrogen embrittlement[J]. J. Alloys Compd., 2008, 460: 353
[26]
Hashi K, Ishikawa K, Matsuda T, et al.Microstructure and hydrogen permeability in Nb-Ti-Co multiphase alloys[J]. J. Alloys Compd., 2006, 425: 284
[27]
Li X Z, Liu D M, Liang X, et al.Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes[J]. J. Membr. Sci., 2016, 514: 294
[28]
Ishikawa K, Takano T, Matsuda T, et al.High hydrogen permeability in the Nb-Zr-Ni eutectic alloy containing the primary body-centered-cubic (Nb, Zr) phase[J]. Appl. Phys. Lett., 2005, 87: 081906
[29]
Jiang P, Yu Y D.Effect of heat treatment process on microstructure and hardness of V55Ti30Ni15 alloy for hydrogen permeation[J]. Acta Metall. Sin., 2013, 49: 1105
Dolan M D.Non-Pd BCC alloy membranes for industrial hydrogen separation[J]. J. Membr. Sci., 2010, 362: 12
[31]
Fleury E, Suh J Y, Kim D I, et al.Hydrogen permeation characteristics of rolled V85Al10Co5 alloys[J]. Curr. Appl. Phys., 2012, 12: 1131
[32]
Williamson G K, Smallman R E.III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philos. Mag., 1956, 1: 34
[33]
Revay L.X-ray line broadening in electrodeposited gold coatings[J]. Electrodepo. Surf. Treat., 1975, 3: 139
[34]
Dolan M D, McLennan K G, Way J D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions[J]. J. Phys. Chem., 2012, 116C: 1512
[35]
Nishimura C, Komaki M, Amano M.Hydrogen permeation characteristics of vanadium-nickel alloys[J]. Mater. Trans., 1991, 32: 501