1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China 3 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
Cite this article:
Yaoxiang GENG,Ojied TEGUS,Haibin WANG,Chuang DONG,Yuxin WANG. Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy. Acta Metall Sin, 2017, 53(1): 77-82.
This decade has brought an immense interest in room temperature magnetic refrigeration, because it is considered as a type of potential energy saving material and friendly to environment. MnFe(P, Si) magnetic refrigerants materials shows high-performance and relatively low-cost, which paves the effective way for commercialization of magnetic refrigeration and magnetocaloric power-conversion. The present work is devoted to investigating the effect of Sn addition on microstructure, magnetism and magnetocaloric effect on MnFe(P, Si) alloy. Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0, 0.02, 0.04, atomic fraction) alloys were prepared by mechanical alloying (MA) and solid-state reaction methods. The results show that Sn atoms do not enter into the lattice position of Fe2P. The Sn2(Mn, Fe), (Fe, Mn)3Si, Si-riche (Fe, Mn)2(P, Si) and P-riche (Fe, Mn)2(P, Si) matrix phase are formed in Sn-containing alloys. Two different compositions of (Fe, Mn)2(P, Si) phase result in two ferromagnetic-paramagnetic phase transition and two magnetic entropy change (-ΔSm) peaks at the heating process. This result is in favor of expanding the working temperature and refrigerant capacity (RC) of magnetic refrigeration materials. Mn1.3Fe0.7P0.5Si0.5 alloy shows a maximal magnetic-entropy changes (-ΔSmax) of 12.1 J/(kgK) in a magnetic field change of 0~1.5 T, a maximal adiabatic temperature change (ΔTad) of 2.4 K in a magnetic field change of 0~1.48 T and a thermal hysteresis (ΔThys) of 3 K in vicinity of Curie temperature of 273 K, which can be used as a promising candidate material for room-temperature magnetic refrigeration applications.
Fund: Supported by National Magnetic Confined Fusion Energy Development (Nos.2013GB107003 and 2015GB105003), National Natural Science Foundation of China (Nos.51671045 and 51601073), Fundamental Research Funds for the Central Universities (No.DUT16ZD209) and Fund of the State Key Laboratory of Solidification Processing in NWPU (No.SKLSP201607)
Fig.2 SEM images of Mn1.3Fe0.7P0.5Si0.5 (a) and Mn1.3Fe0.7P0.5Si0.46Sn0.04 (b) alloys
Fig.3 Temperature (T) dependences of magnetization (M) (a) and dM/dT (b) curves of Mn1.3Fe0.7P0.5Si0.5-xSnx alloys in applied field of 0.05 T (Curves a and b in Fig.3a corresponding to heating process and cooling process, respectively, Tc1—first magnetic-phase transition temperature, Tc2—second magnetic-phase transition temperature)
Fig.4 Isothermal magnetizations (M-B) of Mn1.3Fe0.7P0.5Si0.5 (a) and Mn1.3Fe0.7P0.5Si0.46Sn0.04 (b) alloys (B—magnetic field, ΔT—temperature interval between adjacent two M-B curves)
Fig.5 Isothermal magnetic-entropy changes (-ΔSm) curves of Mn1.3Fe0.7P0.5Si0.5-xSnx alloys in a field change of 1.5 T (a) and adiabatic temperature change (ΔTad) curve of Mn1.3Fe0.7P0.5Si0.5 alloy in a field change of 1.48 T (b)
Alloy
Tc1 K
Tc2 K
ΔThys K
-ΔSmax1 Jkg-1K-1
-ΔSmax2 Jkg-1K-1
RC Jkg-1
ΔTadmax K
Mn1.3Fe0.7P0.5Si0.5
-
273
3
-
12.1
71
2.4
Mn1.3Fe0.7P0.5Si0.48Sn0.02
190
233
10
1.3
7.8
80
-
Mn1.3Fe0.7P0.5Si0.46Sn0.04
167
213
13
1.9
5.6
87
-
Table 1 Tc1, Tc2, thermal hysteresis of matrix phase (ΔThys), maximal magnetic-entropy changes of Si-rich (Fe, Mn)2(P, Si) phase (-ΔSmax1) and matrix phase (-ΔSmax2), refrigerant capacity (RC) and maximal adiabatic temperature change (ΔTadmax) of Mn1.3Fe0.7P0.5Si0.5-xSnx serial alloys
[1]
Chen P, Wang D H, Du Y W.Progress on working material of magnetic cooling[J]. Prog. Phys., 1999, 19: 371
Brück E.Developments in magnetocaloric refrigeration[J]. J. Phys., 2005, 38D: R381
[3]
Brück E, Tegus O, Li X W, et al.Magnetic refrigeration-towards room-temperature applications[J]. Physica, 2003, 327B: 431
[4]
Bednarz G, Geldart D J W, White M A. Heat capacity of gadolinium near the Curie temperature[J]. Phys. Rev., 1993, 47B: 14247
[5]
Li J W, Huo J T, Law J Y, et al.Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature[J]. J. Appl. Phys., 2014, 116: 063902
[6]
Pecharsky V K, Gschneidner K A Jr. Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys. Rev. Lett., 1997, 78: 4494
[7]
Hu F X, Shen B G, Sun J R, et al.Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Appl. Phys. Lett., 2001, 78: 3675
Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415: 150
[10]
Trung N T, Zhang L, Caron L, et al.Giant magnetocaloric effects by tailoring the phase transitions[J]. Appl. Phys. Lett., 2010, 96: 172504
[11]
Tegus O, Fuquan B, Dagula W, et al.Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex[J]. J. Alloys Compd., 2005, 396: 6
[12]
Dagula W, Tegus O, Li X W, et al. Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5–xSix(x=0~0.3) compounds [J]. J. Appl. Phys., 2006, 99: 08Q105
[13]
Thanh D T C, Brück E, Tegus O, et al. Magnetocaloric effect in MnFe(P, Si, Ge) compounds [J]. J. Appl. Phys., 2006, 99: 08Q107
[14]
Song L, Wang G F, Ou Z Q, et al.Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5-xSix compounds[J]. J. Alloys Compd., 2009, 474: 388
[15]
Trung N T, Ou Z Q, Gortenmulder T J, et al.Tunable thermal hysteresis in MnFe(P, Ge) compounds[J]. Appl. Phys. Lett., 2009, 94: 102513
[16]
Dung N H, Zhang L, Ou Z Q, et al.From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)1.95P0.50Si0.50 compounds[J]. Appl. Phys. Lett., 2011, 99: 092511
[17]
Geng Y X, Tegus O, Bi L G.Magnetocaloric effects in Mn1.35Fe0.65P1-xSix compounds[J] Chin. Phys., 2012, 21B: 037504
[18]
Tegus O, Bao L H, Song L.Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)[J]. Chin. Phys., 2013, 22B: 037506
[19]
Dung N H, Ou Z Q, Caron L, et al.Mixed magnetism for refrigeration and energy conversion[J]. Adv. Energy Mater., 2011, 1: 1215
[20]
Yibole H, Guillou F, Zhang L, et al.Direct measurement of the magnetocaloric effect in MnFe (P, X) (X = As, Ge, Si) materials[J]. J. Phys., 2014, 47D: 075002
[21]
Geng Y X, Tegus O.Experimental study on the magnetocaloric effect in Mn1.2Fe0.8-xCoxP0.48Si0.52 compounds[J]. J. Magn. Mater. Dev., 2011, 42(5): 17
Geng Y X, Tegus O, Bi L G, et al.Influence of different preparation techniques and raw materials on magnetocaloric effect in Mn1.2Fe0.8P0.48Si0.52 compound[J]. J. Chin. Rare Earth Soc., 2011, 29: 266
Hashimoto T, Numasawa T, Shino M, et al.Magnetic refrigeration in the temperature range from 10 K to room temperature: The ferromagnetic refrigerants[J]. Cryogenics, 1981, 21: 647
[24]
Chirkova A, Skokov K P, Schultz L, et al.Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions[J]. Acta Mater., 2016, 106: 15
[25]
Duan T F, Ren W J, Liu W, et al.Magnetization processes and transitions between two antiferromagnetic spin configurations in single-crystalline MnSn2[J]. Physica, 2016, 495B: 94
[26]
Huliyageqi B, Geng Y X, Li Y J, et al.A significant reduction of hysteresis in MnFe(P, Si) compounds[J]. J. Korean Phys. Soc., 2013, 63: 525
[27]
Zheng Z G, Tan Z C, Yu H Y, et al.Structural, magnetic properties and magnetocaloric effect of Mn1.2Fe0.8P1-xSixB0.03 compounds[J]. Mater. Res. Bull., 2016, 77: 29