Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy
Kang WANG1,Aihong DENG1(),Min GONG1,Xiaobo LU1,Yuanyuan ZHANG1,Xiang LIU2
1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China 2 Southwestern Institute of Physics, Chengdu 610041, China
Cite this article:
Kang WANG,Aihong DENG,Min GONG,Xiaobo LU,Yuanyuan ZHANG,Xiang LIU. Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy. Acta Metall Sin, 2017, 53(1): 70-76.
Tungsten is considered as the most promising candidate for plasma-facing materials in future nuclear fusion reactors. The damage behaviors of tungsten under different He irradiation are one of the main issue of concerns. In this work, the evolution of helium-related defect in polycrystalline tungsten was studied by slow positron beam analysis (SPBA) and SEM as functions of annealing temperature and implantation fluence. The results show that the number of vacancy-type defect induced by the multi-energy He irradiation increases with the increment of irradiation fluence. At the meantime, annealing at the temperature of 220 ℃ induces the recombination of interstitial W atoms with vacancies, thus reduces the number of the vacancy-type defects in the sample. And annealing at 450 and 650 ℃ leads to the formation of He bubbles in the tungsten materials, and the size of He bubbles in tungsten is related to the annealing temperature, and the He bubbles and holes with a diameter of about 600 nm could be observed for the specimen annealing at 650 ℃.
Table 1 The number of tungsten samples and the corresponding fluence of He+ irradiation
(1016 cm-2)
Fig.1 SRIM-2013 calculation results of the He+ implantation profiles (full symbols) in tungsten and the corresponding displacements profiles (open symbols)
Fig.2 S-E plots for the He+ implanted tungsten under different fluences (S—low momentum annihilation fractions,E—positron energy)
Fig.3 S-W plots for virgin W (a) and the He+ implanted tungsten samples of 1# (b), 2# (c) and 3# (d) (W—high momentum annihilation fraction)
Fig.4 Cross-sectional SEM images of 3# sample of virgin tungsten (a) and He+ implanted tungsten (b~e) without annealing (b), annealed at 220 ℃ (c), 450 ℃ (d) and 650 ℃ (e) (Circles in Figs.4b and c indicate the small white bubbles)
Fig.5 S-E plots for the He+ implanted tungsten annealed at different temperatures
Fig.6 S-W plots for virgin tungsten (a) and He+ implanted tungsten annealed at 220 ℃ (b), 450 ℃ (c) and 650 ℃ (d)
[1]
Clark R E H, Reiter D H. Nuclear Fusion Research: Understanding Plasma-Surface Interactions[M]. Berlin: Springer, 2005: 3
[2]
Hao J K.Fusion Reactor Material [M]. Beijing: Chemical Industry Press, 2007: 12
[2]
(郝嘉琨. 聚变堆材料 [M]. 北京: 化学工业出版社, 2007: 12)
[3]
Yuan B S, Jiang S F, Lu Z H.Device Foundation of Tokamak [M]. Beijing: Atomic Energy Press, 2011: 155
Federici G, Barabash V, Janeschitz G, et al.Selection of plasma-facing materials in next-step fusion devices [A]. 19th Symposium on Fusion Engineering[C]. Atlantic: IEEE, 2002: 311
[5]
Bolt H, Barabash V, Federici G, et al. Plasma facing and high heat flux materials——needs for ITER and beyond [J]. J. Nucl. Mater., 2002, 307-311: 43
[6]
Frauenfelder R.Solution and diffusion of hydrogen in tungsten[J]. J. Vac. Sci. Technol., 1969, 6: 388
[7]
Federici G, Anderl R, Brooks J N, et al. Tritium inventory in the ITER PFC's: predictions, uncertainties, R&D status and priority needs [J]. Fusion Eng. Des., 1998, 39-40: 445
[8]
Pitts R A, Carpentier S, Escourbiac F, et al.A full tungsten divertor for ITER: physics issues and design status[J]. J. Nucl. Mater., 2013, 438(suppl.): S48
[9]
Wang F Z, Tang L X, Feng P F, et al.Tungsten Materials and Its Processing [M]. Beijing: Metallurgy Industry Press, 2008: 1
Ioki K, Barabash V, Cardella A, et al. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel [J]. J. Nucl. Mater., 1998, 258-263: 74
[11]
Barnes R S.Embrittlement of stainless steels and nickel-based alloys at high temperature induced by neutron radiation[J]. Nature, 1965, 206: 1307
[12]
Lhuillier P E, Belhabib T, Desgardin P, et al.Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten[J]. J. Nucl. Mater., 2013, 433: 305
[13]
Woller K B, Whyte D G, Wright G M, et al.Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection[J]. J. Nucl. Mater., 2013, 438(suppl.): S913
[14]
Wiss T A G, Hiernaut J P, Damen P M G, et al. Helium behaviour in waste conditioning matrices during thermal annealing[J]. J. Nucl. Mater., 2006, 352: 202
[15]
Debelle A, Barthe M F, Sauvage T, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater., 2007, 362: 181
[16]
Debelle A, Barthe M F, Sauvage T.First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy[J]. J. Nucl. Mater., 2008, 376: 216
[17]
Debelle A, Lhuillier P E, Barthe M F, et al.Helium desorption in 3He implanted tungsten at low fluence and low energy[J]. Nucl. Instr. Meth. Phys. Res., 2010, 268B: 223
[18]
Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. J. Nucl. Mater., 2000, 283-287: 1134
[19]
Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten [J]. J. Nucl. Mater., 2002, 307-311: 135
[20]
Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation on plasma facing metals [J]. J. Nucl. Mater., 2005, 337-339: 946
[21]
Watanabe Y, Iwakiri H, Yoshida N, et al.Formation of interstitial loops in tungsten under helium ion irradiation: rate theory modeling and experiment[J]. Nucl. Instr. Meth. Phys. Res., 2007, 255B: 32
[22]
Henriksson K O E, Nordlund K, Krasheninnikov A, et al. The depths of hydrogen and helium bubbles in tungsten: a comparison[J]. Fusion Sci. Technol., 2006, 50: 43
[23]
Wang S J, Chen Z Q, Wang B, et al.Applied Positron Spectroscopy [M]. Wuhan: Hubei Science and Technology Press, 2008: 39
Yu W Z.Positron Physics and Its Application [M]. Beijing: Science Press, 2002: 441
[24]
(郁伟忠. 正电子物理及其应用 [M]. 北京: 科学出版社, 2002: 441)
[25]
Van Veen A, Schut H, de Vries J, et al. Analysis of positron profiling data by means of "VEPFIT" [A]. 4th International Workshop on: Slow-Positron Beam Techniques for Solids and Surfaces[C]. Canada: AIP, 1990, 218: 171
[26]
Ziegler J F, Ziegler M D, Biersack J P.SRIM——The stopping and range of ions in matter (2010)[J]. Nucl. Instr. Meth. Phys. Res., 2010, 268: 1818
[27]
Yu J N.Material Radiation Effect [M]. Beijing: Chemical Industry Press, 2007: 154
[27]
(郁金南. 材料辐照效应 [M]. 北京: 化学工业出版社, 2007: 154)
[28]
Wang Q, Meng D Q, Liu K D, et al.Study of pure iron implanted by the multiple energy-carbon ion[J]. Mater. Prot., 2007, 40(5): 13
Mantl S, Triftshauser W.Defect annealing studies on metals by positron annihilation and electrical resitivity measurements[J]. J. Phys. Rev., 1978, 17B: 1645
[30]
Clement M, De Nijs J M M, Balk P, et al. Analysis of positron beam data by the combined use of the shape- and wing-parameters[J]. J. Appl. Phys., 1996, 79: 9029
[31]
Wang P X, Song J S.Material of Helium and Tritium Permeation [M]. Beijing: National Defence Industry Press, 2002: 16
[31]
(王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002: 16)
[32]
Zhang L, Wang P X, Tao R, et al.Thermal nucleation and growth of He bubbles in He implanted stainless steels[J]. Acta Metall. Sin., 1992, 28: A521